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Abstract—Hierarchical modularity is a parsimonious design
principle in many complex systems and underlies various key
structural and functional aspects of neurobiological systems,
whose modules are recurrent networks of spiking neurons. An
essential requirement for such systems to adequately function
is the ability to transfer information across multiple modules
in a reliable and efficient manner. In this work, we study the
characteristics of emergent stimulus representations in recurrent,
spiking neural networks and the features that allow efficient
information transfer among multiple, interacting sub-networks.
We find that the specificity of structural mappings between the
modules is strictly required for information to propagate to a
sufficient depth, in a sequential setup. Conserved topography
not only improves computational performance in all scenarios
analyzed, but it proves to be more robust against noise and
interference effects, results in less variability in the neural
responses and increases memory capacity.

Index Terms—stimulus representation, state transfer, modular-
ity, spiking neural networks

I. INTRODUCTION

To a first approximation, the mammalian neocortex can be
seen as a large distributed hierarchy of interacting recurrent
networks, whose rich high-dimensional dynamics subserves
complex computational processes. Given this proof of princi-
ple, it is reasonable to expect that, when fed appropriate inputs
and arranged in appropriate hierarchies, recurrent modules
of spiking neural networks (SNN) may acquire tremendous
processing capacity and efficiency, by hierarchically compos-
ing relevant stimulus features as structural rules at different
temporal and spatial scales. Coherent conceptual accounts for
spatiotemporal processing with SNNs already exist (e.g. [1]),
but seldom consider the role of hierarchical modularity and
focus entirely on local information processing in nonlinear
dynamical systems. On the other hand, the computational ben-
efits of complex hierarchical processing (hierarchical feature
composition) have been largely demonstrated and exploited in
the domain of artificial neural networks [2].

An essential first step towards more sophisticated processing
across distributed hierarchies lies in the ability to retain and
transfer adequate representations of the relevant stimulus fea-
tures, in a usable manner that the subsequent processing stages
can exploit. Propagation across distributed spiking networks
has been studied, but typically devoid of functional context,

i.e. while there have been a number of studies exploring
the mechanisms underlying information transfer in spiking
neural networks, they have mainly focused on the faithful
propagation of spiking activity within one or across multiple
neuronal populations without attributing functional meaning
(information content) to such processes (but see, e.g. [3]). A
systematic analysis of how meaningful information can be
transferred in a computationally useful way in hierarchical
spiking microcircuits remains relatively unexplored.

A fruitful way to address the issue while placing the
focus on functional constraints lies in considering the spiking
neural network to be a state-dependent processing reservoir
whose high-dimensional transient dynamics supports informa-
tion processing with fading memory. This framework, collec-
tively termed reservoir computing (RC) and often referred
to as Liquid State Machines [4] in the context of spiking
networks, relies on the conceptual separation between a dy-
namic, excitable reservoir (a recurrent network seen as a
nonlinear temporal expansion function) and a recurrence-free
(memoryless) readout mechanism that linearly combines the
high-dimensional population activity and extracts information
from it, approximating a desired output. Through the effect
of the nonlinear nodes and their recurrent interactions, the
input is transformed in an expansive nonlinear embedding.
Effectively, the reservoir projects a low dimensional input
to a high dimensional feature space retaining time course
information in the transient network responses. Importantly,
apart from demonstrated computational proficiency, the RC
framework relies on biologically plausible principles, con-
sistent with the dynamics of information processing in real
cortical microcircuits (see e.g. [5]).

In this work, we study the characteristics of emergent
stimulus representations in recurrent, spiking neural networks
and the features that allow efficient information transfer among
multiple, interacting sub-networks. To exploit the complex,
transient dynamics that such networks exhibit during active
processing, we apply RC principles and probe the systems’
computational performance with specific tasks. The goal of
this work is to provide a relevant initial step towards modular,
hierarchical processing with recurrent spiking networks.
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II. METHODS

Throughout this study, we explore the interactions between
multiple recurrently coupled networks of spiking neurons,
tuned to operate in a balanced, asynchronous irregular regime,
under stationary conditions. We analyze the characteristics of
stimulus representation and propagation and how the features
of these sub-networks and the projections between them in-
fluence their representational capabilities.

A. Network Architecture

The systems analyzed consist of multiple sub-networks
(layers) of sparsely and randomly coupled recurrent networks
of excitatory (E) and inhibitory (I) neurons (see Figure 1A).
Each sub-network is thus composed of N = 10000 leaky
integrate-and-fire (LIF) neurons, sub-divided into NE = 0.8N
excitatory and N I = 0.2N inhibitory populations (see subsec-
tion II-C). Recurrent connections (within layer) are randomly
drawn with a fixed probability ε = 0.1, common for all
layers, i.e., on average, each neuron receives recurrent input
from KE = εNE excitatory and KI = εN I inhibitory local
synapses. The projections between the layers are considered,
for simplicity, to be purely feed-forward and excitatory, i.e. the
Ei population in layer Li connects (with probability pff ) to
both populations Ej and Ij in a subsequent layer Lj ,∀j > 1,
providing all neurons in layers Lj with an additional source
of excitatory input, mediated via KLj

= pffN
E synapses

(see Figure 1). In addition, each neuron in each layer receives
stochastic external input (background noise) from Kx =
pxN

x synapses, necessary to place the system in a responsive
regime. We set Nx = NE, as it is commonly assumed that
the number of background input synapses modeling local and
distant cortical input is in the same range as the number of
recurrent excitatory connections.

The total input from sources external to each layer is scaled
to ensure that all neurons (regardless of their hierarchical
position) receive, on average, the same amount of excitatory
drive, in order to preserve the operating points of the sub-
networks. Whereas in the first (input) layer L1, px = ε, for
deeper layers, the connection densities are chosen such that
pff + px = ε, with pff = 0.75ε and px = 0.25ε, yielding a
ratio of 3:1 between the number of feed-forward and external
synapses.

B. Feed-forward Connectivity

Additionally, the feed-forward projections among the dif-
ferent layers can be completely random or topographically
structured, following a ubiquitous design principle in neocor-
tical hierarchies. As such, in addition to random feed-forward
connections (Figure 1A), we also investigate the effects of
structured projections (Figure 1B) on the ability to adequately
propagate information across the hierarchy. To integrate such
topographic projections, a network with random recurrent and
feed-forward connectivity (subsection II-A) is modified by
randomly assigning sub-groups of stimulus-specific neurons in
each layer and conserving this map across the hierarchy. To
be more concrete, each stimulus Sk projects onto a (randomly

chosen) subset of excitatory and inhibitory neurons in L1,
which we will denote E1

k and I1
k (typically comprising 800

and 200 neurons, respectively). The connections from E1
k to

layer L2 are then rewired such that these input-specific neurons
project only to populations E2

k and I2
k while maintaining

the average connection density pff , unless otherwise stated.
Similarly to the first layer, these sub-populations are randomly
assigned to receive projections corresponding to stimulus Sk.
By repeating these steps throughout the hierarchy, we assure
that each stimulus is propagated through a specific pathway.
This is illustrated for stimulus S1 in Figure 1B. Note that the
stimulus-specific sub-populations in each layer might overlap
since they are selected randomly, and that the overlap increases
with the number of stimuli.

C. Neuron and Synapse Model
All neurons are modeled with the common leaky integrate-

and-fire (LIF) formalism, with fixed voltage threshold and
conductance-based synapses. The time course of the sub-
threshold membrane potential Vi of a neuron i is given by:

Cm
dVi
dt

= gleak(Vrest − Vi(t)) + IE
i (t) + II

i (t) + Ix
i (t) (1)

where IE
i and II

i represent the total excitatory and inhibitory
synaptic input current, respectively. Ix

i represents external
background input assumed, for simplicity, to be excitatory (all
parameters equal to recurrent excitatory synapses), unspecific
and stochastic (Poisson process), coming from sources firing at
a fixed rate νx = 5 spk/s. Whenever the membrane potential
Vi crosses a fixed firing threshold of Vth = −50 mV, an
action potential is emitted and the membrane potential reset to
Vreset = −60 mV for a fixed refractory period of tref = 2 ms,
after which integration is resumed as above.

When a pre-synaptic neuron j from population β ∈ {E, I}
fires, the current it induces in post-synaptic neuron i is given
by:

Iij(t) = gij(t)(Vβ − Vi(t)) (2)

where Vβ is the reversal potential of the corresponding
synapse, set to the values of VE = 0 mV and VI = −80 mV.
The total amount of synaptic current that flows into neuron i
at time t is thus the sum of the individual currents from all
pre-synaptic sources.

Spike-triggered synaptic conductances gij(t) are modeled as
an instantaneous rise, followed by an exponential decay with
time constant τE = 5 ms and τI = 10 ms for excitatory and
inhibitory synapses, respectively:

dgij(t)

dt
= −gij(t)

τβ
+ ḡβ

∑
tj

δ(t− tj − d) (3)

with conduction delays d = 1.5 ms for all synapse types. Peak
conductances are specific for each synapse type and chosen so
that each layer operates in a balanced, low-rate asynchronous
irregular regime when driven solely by background input (fol-
lowing [6]). This parameter tuning (data not shown) resulted
in ḡE = 1 and ḡI = 16, giving rise to average firing rates of
around 3 Hz, CVISI ∈ [1.0, 1.5] and CC ≤ 0.01.
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D. Stimulus classification

To assess how accurately each layer is able to acquire,
represent and transmit information, we drive the system with
a stimulus sequence {S1, S2, ...} ∈ S, of finite total length T ,
comprising |S| different stimuli. Each stimulus consists of a
set of 800 Poisson processes at a fixed rate νstim = λ∗νx (with
λ = 3, unless otherwise stated) and fixed duration of 200 ms.
These input neurons project to a random, but stimulus-specific
sub-population of E and I neurons in the first layer L1, which
we will commonly refer to as the input layer.

In each layer Li, the responses of the excitatory population
are sampled at fixed time points t∗ relative to stimulus onset
(typically t∗ = 200 ms, unless otherwise stated) and these
activity vectors are gathered in a state matrix XLi ∈ RNE×T

,
comprising a sample of population responses for each stimulus
in the sequence. Where applicable, the measured responses
are quantified using the low-pass filtered spike trains of the
individual neurons by convolving them with an exponential
kernel with τ = 20 ms and temporal resolution equal to the
simulation resolution, 0.1 ms. Otherwise, most of the analyses
are performed considering the membrane potential Vm of the
neurons as the primary state variable, as it is parameter-free
and constitutes a more natural choice (see [7]).

To assess the classification accuracy in each layer, we
determine the capacity to linearly combine the input-driven
population responses to approximate the desired output [8]:

Ŷ = W outX (4)

where Ŷ ∈ Rr×T and X ∈ RN×T are the collection of
all outputs and corresponding states over all time steps T ,
W out is a NE×r matrix of output weights from the excitatory
populations in each layer to their dedicated readout units,
chosen to minimize the quadratic error between the readout’s
output ŷ and the desired, binary target values y (training the
readout):

W out = Y XT
(
XXT + βI

)−1
(5)

The regularization parameter β penalizes solutions with
large norm, essentially forcing the readout to avoid over-
weighting specific dimensions but instead gather information
in the distributed population activity. The input sequence of
length T is divided into a train (0.8T ) and a test (0.2T )
set. The former is used to train a set of r linear readouts
to correctly classify the sequence of stimulus patterns. For
each layer, the dimensionality of the readout layer matched
the number of different stimuli to be classified, r = |S|, and
the target output y is a binary representation of the stimulus
sequence. The regularization parameter β is chosen by Leave-
One-Out cross-validation on the training dataset.

Predicted stimulus labels are obtained by applying the
winner-takes-all (WTA) operation on the readout outputs ŷ
for each stimulus in the test set. Average classification perfor-
mance is then measured as the fraction of correctly classified
patterns.

Numerical Simulations and Analyses

All numerical simulations were run using NMSAT1 [9], a
high-level wrapper for NEST customized for the application
of reservoir computing principles to complex microcircuits.
NEST version 2.12.0 [10] was used for all the numerical
simulations.

III. RESULTS

As a necessary first step towards more specialized process-
ing, information about stimulus identity ought to be easily
maintained in the input layer and propagated through the
hierarchy. To assess the quality of emergent representations
and the adequacy of information propagation, we employ a
simple classification task and carefully analyze the responses
to stimuli observed in the different layers.

A. Stimulus representation in sequential hierarchies

Fully random projections (Figure 1A) allowed maximum
classification accuracy to be achieved in the first two layers,
L1 and L2, with little or no variance across trials (Figure 1C).
From layer L3 onwards, however, there is a significant drop
in classification accuracy, with a mean (over 10 trials) of
≈ 0.55. These results imply that despite the random connec-
tivity between L1 and L2, the emerging population responses
in L2 are sufficiently discernible and unique to propagate
to L3 in a distinguishable manner, but not enough for an
adequate classification performance or for further propagation
downstream. This drop in representational accuracy in L3 then
hinders the ability to propagate stimulus information further
and L4 is entirely unable to distinctly represent the different
stimuli (accuracy remains at chance level).

Incorporating topographic projections into the hierarchy
(Figure 1B), whereby the neurons that receive direct stim-
ulation at Li connect exclusively to another set of stimulus-
specific neurons in the subsequent layer, counteracts the effects
observed with random mappings and leads to a considerable
improvement in classification accuracy in the last two lay-
ers, i.e. stimulus information was accurately propagated to
the deeper layers. This improvement suggests that stimulus-
specific topographic maps play an essential role in success-
ful propagation of signals across multiple interacting sub-
populations.

Since computing the accuracy scores relies on a non-
linear post-processing step (WTA, see subsection III-A), we
additionally verify whether this operation significantly affects
the results, by evaluating the mean squared error of the raw
readout output ŷ (MSE, Figure 1D). As expected, the error
values are close to zero in the first layer and then increase with
depth for both network setups, being significantly higher in L3

and L4 for random connections. The magnitude of the impact
of topographic mappings is very noticeable and significant in
the deeper layers, consistent with the corresponding accuracy
scores.

1github.com/rcfduarte/nmsat
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Fig. 1. Stimulus classification in sequential hierarchies. Hierarchies are composed of four identical layers, with random (A) or topographically structured (B)
feed-forward connections from each E population (larger, black circles) to both E and I (smaller, gray circles) populations in the next layer (subsection II-A).
Structured stimuli were used to drive specific sub-populations in L1 as described in subsection II-D. For stimulus S1, the topographic projections (B, dashed
lines) are represented explicitly in addition to the corresponding stimulus-specific sub-populations (shaded ellipses), as detailed in subsection II-B. For S2, only
the sub-populations are depicted (solid lines, no shading). C, D: Mean classification accuracy and corresponding mean error for a stimulus set of |S| = 10
in each of the four sequentially connected layers averaged over ten trials , each using T = 5000 samples. Error bars show the standard deviations. E:
Classification accuracy in L3 and L4 based on Vm as a function of the intensity of the input stimuli for ten different stimuli and ten trials per condition.
F: Classification accuracy (gray) and MSE (white) for two stimuli as a function of the percentage of connections removed between neurons receiving direct
stimulus input in L1 and neurons in L2. G: Classification accuracy in L4 for 50 stimuli as a function of the connection probabilities within the topographic
projections.

1) Modulating stimulus propagation: In this section, we
study the impact of stimulus intensity and different con-
nectivity properties on information transmission. For random
networks, stimuli with larger input rates are more likely to
be successfully propagated through the hierarchy, as reflected
by the classification performance in Figure 1E. The stimulus
intensity was varied between 5 and 25 spk/s. For these values,
the accuracy is always 1 in the first two layers (not shown).
In L3, the performance increases linearly with the stimulus
intensity, up to a value of 0.8, but this improvement does not
transfer to the last layer, where the results remain at chance
level. This means that unstructured feed-forward connectivity
does not allow signal propagation to reach a fourth layer,
regardless of the intensity of the input stimulus and, surpris-
ingly, regardless of the classification accuracy obtained in layer
L3. Note that due to the large scaling factor, for 20 spk/s
and above, the activity already enters an unrealistically bursty

regime with very high firing rates (data not shown).

Randomly connected networks provide no structured path-
ways to enable information transfer between the layers, yet
stimuli can be read out as far as L3. However, by construction,
some neurons in the first layer that receive input stimulus di-
rectly also project (randomly) to the second layer. To assess the
importance of these direct projections for signal propagation,
we gradually remove them and measure the impact on the
classification accuracy in L2 (Figure 1F). The performance
begins to drop only after half of the direct synapses are
removed, and the decrease exclusively affects the low-pass
filtered responses. This means that the system is fairly robust
with respect to the loss of direct connections between the
layers. Moreover, the populations in L1 are able to create
an internal representation of the input through their recurrent
connections, and transfer this state representation to the next
layer in a useful manner, at the level of membrane potentials
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correlation coefficient, computed pairwise and averaged across 500 pairs, center) and mean firing rate across the excitatory populations (right).

(for which accuracy remains 1). For this state variable, the
MSE increases only marginally, signaling robust responses.
The different results obtained when considering spiking ac-
tivity and sub-threshold dynamics indicate that the functional
impact of recurrence is much more evident in the population
membrane potentials.

The results discussed above involve at most ten stimuli,
and the connection probability along the topographic maps
was always fixed to pff = 0.75ε, or 7.5%. However, in
addition to stimulus intensity and directed connectivity, the
density of these projections is bound to play a significant role
in successful propagation. To quantify this effect, we test the
ability of the last layer, L4, to discriminate 50 different stimuli.
As Figure 1G shows, this is possible, but the performance
depends strongly on the density of topographic projections.
Increasing the number of stimuli leads to a significantly lower
performance for the same projection density , from ≈ 1
with ten stimuli (Figure 1C) to ≈ 0.3 with 50. Since the
projections between the layers can overlap, more stimulus-
specific pathways naturally lead to more overlap between these
regions, causing less discriminable responses. However, this
seems to be compensated by increasing connection density,
and thus strengthening the connectivity along the topographic
maps.

2) Population activity: The ability to internally represent
and transfer information in a usable manner is determined by
the macroscopic features that characterize population activity
in the different scenarios (Figure 2), which in turn, is a
direct consequence of the manner in which excitatory inputs
drive the different sub-networks. When driven only by the
Poissonian background noise, the activity in the first two

layers is asynchronous and irregular, but evolves into a more
synchronous regime in L3 (see noise condition in Figure 2,
bottom center), and in L4 the system’s operating point is
entirely switched to a synchronous regular regime, which is
known to hinder information processing [6]. The excessive
synchronization in the last layer is also responsible for the
higher firing rate of ≈ 10 spk/s and is mainly a consequence
of an increase in shared pre-synaptic inputs. As we move
to deeper layers, the feed-forward projections increase the
convergence and the post-synaptic responses. This moves the
network activity away from Poissonian statistics, an effect
that accumulates from layer to layer and gradually skews the
population activity towards states of increased synchrony.

Compared to baseline activity, the presence of a patterned
stimulus increases the irregularity in all layers except the very
first one, and reduces the synchrony in the last two layers
significantly, allowing the system to globally maintain the
asynchronous irregular regime. In line with the performance
results, the underlying population activity demonstrates the
computational benefits of operating in such states. Further-
more, random projections are not enough to entirely overcome
the shared-input effect in L4 (chararacterized by increased
synchrony, CC ≈ 0.12), but topographic maps are, maintain-
ing an asynchronous firing profile even in the deeper layers.
The lower firing rates in networks with topography can be
explained by the fact that neurons receiving direct stimulus
input in L1, having high firing rates, only project to a restricted
group of neurons in the subsequent layers, thus having a
smaller impact on the average population activity downstream.
This implies that topography enables both more accurate and
more resource-efficient information transmission, achieving
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better performance for lower overall network activity.
3) State separability: Adequate input-state mappings are

reflected in the geometric organization of the circuit’s state-
space, whereby different stimuli are mapped to different,
stimulus-specific sub-spaces (the separation property, see [4]).
In this section, we evaluate the quality of these mappings as
the representations are transferred from layer to layer.

The differences in the representational performance of
the two connectivity profiles explored (random versus topo-
graphic) can be understood by the degree of uniqueness in the
elicited stimulus-specific responses. Ideally, patterned external
stimuli would allow the state-space to be partitioned into
clearly segregated stimulus-specific state-vector clusters, i.e.
population activity in response to different stimuli flows along
well segregated sub-spaces. We assess the degree of clus-
tering by analyzing the characteristics of a low-dimensional
projection (obtained through principal component analysis)
and evaluating how close each data point (state vector pro-
jected onto the space spanned by the first 3 PCs) in one
stimulus-specific cluster is to points in neighboring clusters.
Each labeled sample of population activity is thus given a

silhouette coefficient (SC, Figure 3A) ranging between [−1, 1].
A coefficient value close to 1 indicates that the data point is
close to the mean of its assigned cluster (stimulus label), near
0 points to partially overlapping clusters, while negative val-
ues imply wrong cluster assignment. This measurement thus
allows us to quantify the compactness of stimulus-dependent
state vector clusters, and observe a decay in the clustering
quality throughout the hierarchy. Starting with L2, there is
a consistent difference of about 0.15 in the silhouette score
between the random and topographic setups. The decay is not
reflected uniformly for all stimuli, but the trend is consistent.

It is worth noting that the silhouette plots were computed
for a single trial and rely only on clustering the space spanned
by the first three PCs. To obtain a more representative result,
we repeat the analysis for multiple trials (and considering the
first ten principal components) and summarize the results using
the silhouette score (Figure 3C). These results reveal a clear
disparity in the clustering quality for random and topographic
networks, in accordance with the classification performances
(Figure 1).

To further quantify how efficiently the networks use their
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high-dimensional state space, we evaluate how many PCs are
necessary to account for most of the variance in the data
(Figure 3B, D). In the first layer, the variance captured by each
subsequent PC is almost constant (≈ 10%), and reaches around
70% by the 9th PC (Figure 3B), indicating that population
activity lies in a very low-dimensional sub-space (Figure 3D)
where the stimulus impact is strongest, “enslaving” the ac-
tivity and creating narrower, stimulus-specific trajectories. For
random networks, however, this trend is not reflected in the
subsequent layers (where the first 10 PCs account for less than
10% of the total variance), indicating a significant increase in
effective dimensionality with hierarchical depth (Figure 3D),
a pattern which also exists, to a much lesser extent, in the
topographic case.

As we traverse the hierarchy, population activity becomes
less constrained, leading to the exploration of a larger re-
gion of the state-space. Whereas this tendency is consistent
and more gradual for topographic networks, it is faster in
random networks, suggesting a quicker dispersion of the
stimulus representations. Moreover, since the stimulus does
not reach the last layer with random mappings, the activity
tends to become more synchronous, resulting in a reduced
effective dimensionality. These observations are in line with
the classification performance: the effective dimensionality
(Figure 3D) and variability (Figure 3E) of the neural responses
are inversely related to the classification accuracy, and both
increase with hierarchical depth whereas performance drops.

B. Memory capacity and stimulus sensitivity

While the ability to discriminate the identity of the current
stimulus and adequately propagate this information is critically
important for distributed processing across multiple modules,
it is equally important to understand how information is
retained within these modules and how the systems deal with
interference effects from sequentially presented stimuli.

In this section, we study the time course of stimulus
representation, measuring the memory capacity, i.e. how long
stimulus information is retained in each sub-network through
reverberations of the current state; also how quickly the
network reacts in the presence of a new stimulus as well as
the potential interference between past and present inputs.

We quantify these properties by evaluating classification
accuracy across time: Let t0i = i ∗ 200 ms represent the
offset of stimulus i, with 1 ≤ i ≤ T . The network responses
are sampled at intervals of t∗ = t0i + tsamp and collected
in the state matrix (see subsection III-A), a process repeated
for different sampling offsets, tsamp. For each tsamp, the
corresponding state matrix is used to train two readouts:
one on the labels of the previous stimuli, and a second one
on the current stimulus label. This procedure leads to the
memory decay and build-up curves displayed in Figure 4.
The degree of overlap between the two curves for a given
network configuration indicates how long the system is able
to retain useful information about both the previous and the
present stimuli (Figure 4C). With this analysis we can measure
three important properties of the hierarchical system: how long
stimulus information is retained in the network activity; how
long the network requires to accumulate sufficient evidence to
classify the present input; and what are the interference effects
of multiple stimuli.

Stimulus information and input representations gradually
disappear after stimulus offset (fading memory), a character-
istic illustrated by the decay in the classification accuracy
measured at increasing delays after their offset (Figure 4A).
For computational reasons, only the first 100 ms are plot-
ted, but the decreasing trend in the accuracy continued and
invariably reached the chance level within the first 150 ms,
indicating that these networks have a rather short memory
capacity, unable to span multiple input elements. In any case,
it is evident that the ability to memorize stimulus information
decays with hierarchical depth (Figure 4A). The higher overall
accuracy achieved by topographic networks is again reflected
in the memory curves, demonstrating its important functional
consequences.

In addition, stimulus representations also appear to build
up over exposure time (Figures 4B). A common trend is the
slower build-up of information with depth, more pronounced
for random mappings but clearly observable in the topographic
case as well, reflecting an unsurprising cumulative delay.
Furthermore, topography enables a faster information build-
up beginning with L3.

We subsequently determine the stimulus sensitivity of a
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population, as the extent of time where useful non-interfering
representations are retained in each sub-network. This is
calculated as the area below the intersection of its memory and
build-up curves, representing the previous and current stim-
ulus, respectively. Following a similar trend to performance
and memory, sensitivity to stimulus decreases through the
hierarchy and the existence of structured propagation pathways
leads to clear benefits, particularly pronounced in the deeper
layers.

In summary, deeper layers forget faster and take longer (than
the inter-layer delays) to build up stimulus representations. No
population is able to represent two stimuli accurately for a
significant amount of time (longer than 100 ms), although
topographic maps improve memory capacity and stimulus
sensitivity.

IV. DISCUSSION

The hierarchical and modular nature of the cortex requires
efficient and reliable transmission of information among the
various cortical regions to allow for real-time interaction
with the external environment. In this study, we investigated
the properties of emerging state representations in multiple,
interacting populations of spiking neurons, and examined the
temporal dynamics of the information transferred between
them. We tested the computational capabilities of the system
with linear classification tasks in the context of reservoir
computing. A critical aspect of this work was the comparison
of random connectivity and biologically inspired topographic
projections.

Our results suggest that while random connectivity might
be applied successfully at a local population level, signal
propagation over longer distances and across several cortical
modules requires topographic precision for accurate, robust
and reliable transmission. Such might be the case for the early
sensory systems, where real-time computation is crucial and
where the existence of topographic maps is well supported by
anatomical studies. An important aspect of topographic maps
in the brain, outside the scope of our current study, concerns
the decrease in topographic specificity along the hierarchy,
due to increasingly overlapping projections stemming partly
from larger map sizes, which is assumed to have an important
computational role (see e.g. [11]).

With random feed-forward connectivity, information could
be decoded up to the third layer but not beyond (Figure 1), due
to a decrease in the stimulus-specific tuning with hierarchical
depth (Figure 3). This effect is much less prominent when
topographic projections are used; in that condition, accuracy
remains close to maximum in all four layers. This suggests,
that at least in our simple model, topographic precision is
necessary to accurately transmit stimulus information. Topog-
raphy also prevents the development of synchronous regimes
(Figure 2) in the deeper layers due to the shared-input effect,
since the stimulus propagates more robustly through the layers.

The sequences of network states are trajectories in an
N -dimensional Euclidean space. However, effectively, the
system’s dynamics (particularly when driven by an external

stimulus) flows along compact sub-regions, and is constrained
to operate in a low-dimensional sub-space. Intuitively, a re-
duction in dimensionality means that the trajectory induced
by a stimulus explores only a stereotypical sub-space and
reflects the spatiotemporal features of the input. The effective
dimensionality of the explored state space was lowest in the
first layer where the input is strongest, and increased with
hierarchical depth as the stimulus information fades (Figure 3).
The rate of increase is significantly higher for random connec-
tions, indicating that topography entrains the neural responses
to lower-dimensional stereotypical trajectories. This behavior
is also reflected by the variability of the neuronal activity, with
random connectivity leading to less consistent responses after
the second layer.

Overall, the insights gained from this work could provide
useful constraints for building hierarchical systems composed
of spiking balanced networks that enable accurate information
transmission. Whereas random connectivity is sufficient for
information transfer between two layers, more complex sys-
tems might benefit from some form of structured connectivity.
Topography was found not only to improve computational
performance in all scenarios analyzed, but it proved to be more
robust against noise (data not shown) and interference effects
(Figure 4), due to the spatial segregation of the projections.
Additionally, it led to a reduction in the variability of the
neural responses (Figure 3), prevented the development of
synchronous regimes in the deeper layers (Figure 2), and also
slightly increased memory capacity (Figure 4).

The work presented here is preliminary and exploratory in
nature and thus suffers from a number of limitations. For
simplicity reasons, only relatively simple and homogeneous
networks were considered. However, there is a whole host
of relevant phenomena that is bound to significantly im-
pact the network’s behavior and computational performance
[12], particularly when considered in a hierarchical setting.
Heterogeneity and variability within and across the different
modules may have a critical role to play in differentially
modulating the circuits’ operating points. For example, the
variations in synaptic strengths, transmission delays and/or
response kinetics have been hypothesized to underlie temporal
specialization in neocortical hierarchies [13] and may thus
modulate the circuit’s memory capacity and intrinsic time
constants.

Thus, the lack of timescale diversity and the short memory
spans we observed in the deeper layers could be improved
upon by, for example, incorporating synaptic mechanisms
that operate over longer time scales. Interestingly, our results
stand in contrast with the findings in [14], where authors
report the development of longer timescales in the deeper
layers of hierarchical Echo State Networks (ESNs) [15],
despite using fixed parameters throughout the hierarchy. This
difference suggests that the hierarchical organization of pro-
cessing timescales may not stem merely from recurrence (the
main commonality between the two approaches), but from the
dynamical properties of the reservoirs.

Thus, it is worth investigating the components that give
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rise to multiple timescales in hierarchical spiking networks, as
known from experimental data, along with their influence on
the network’s functional capabilities. Future work should also
focus on including multiple and different layers of biological
realism, and at the same time explore computationally more
complex tasks. From a computer science perspective, hybrid
deep architectures composed of convolutional (spiking) layers
for pre-processing intertwined with randomly connected reser-
voirs for feature discovery may represent a promising research
direction.
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