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Abstract

The highly recurrent connectivity encountered in the neocortical circuitry

makes recurrent neural network (RNN) models highly suitable when inves-

tigating the computational properties of biologically inspired model neuro-

dynamics. The recent reservoir computing (RC) models, an extension of

the RNN paradigm, provide a framework for state-dependent computations,

where information is encoded in the form of state-space trajectories, which

is similar to recent findings in neurobiology. Over the past few years, sev-

eral attempts have been made to endow these network models with adaptive

mechanisms, capable of mimicking the various neural plasticity mechanisms

known to exist in the brain and to play a fundamental role in shaping the

dynamics and information processing capabilities of the underlying neural

networks.

In this thesis, we analyze the dynamic properties of a simple reservoir com-

puter model, with self-organizing plasticity mechanisms operating concomi-

tantly. We investigate how different combinations of three forms of biolog-

ically inspired adaptive mechanisms shape the reservoir’s dynamic proper-

ties and their effectiveness in acquiring an internal representation of struc-

tured symbol sequences. We demonstrate, replicating previous work, that

only combined do these mechanisms allow the dynamic reservoir networks to

achieve an input separation that outperforms static (i.e., without plasticity)

reservoir networks. We further assess how the symbol sequences are inter-

nally represented in different network settings. All reservoir networks are

shown to reflect the input structure in their state dynamics, but plasticity is

clearly beneficial by modifying network parameters, increasing the network’s

ability to ‘learn’ the temporal structure of the input sequences.

Keywords: Recurrent Neural Networks, Reservoir Computing,

Plasticity, Time Series, Sequence Processing, Self-Organization
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Resumo

As redes neuronais encontradas no neocórtex são dos sistemas mais com-

plexos conhecidos tanto a ńıvel estrutural como a ńıvel funcional. Na gen-

eralidade, apresentam padrões de conectividade altamente recorrentes, tor-

nando os modelos de redes artificiais recorrentes os mais apropriados para

a sua simulação em estudos teóricos. Estes modelos permitem analizar as

propriedades emergentes do padrão de conectividade, nomeadamente a ca-

pacidade de processar naturalmente conteúdo espacio-temporal, que se tem

vindo a revelar crucial no processamento de informação no cérebro.

Dados emṕıricos recentes, obtidos maioritariamente nas áreas sensoriais

primárias do córtex (onde o est́ımulo externo está prontamente acesśıvel e

é controlável), sugerem que a informação é largamente representada e pro-

cessada, localmente, sob a forma de trajectórias neurais, lábeis e transientes

(cuja duração depende da tarefa), evolúındo no espaço de activação da rede

neuronal, de forma reprodut́ıvel e espećıfica para os sinais do meio que as

originaram. Essas trajectórias podem depois, teoricamente, ser “lidas” por

determinados neurónios cuja localização no circuito lhes permita distribuir

essa informação para o próximo módulo de processamento.

Tendo em conta que existe uma certa regularidade nos circuitos neuronais

e que as mesmas redes são capazes de processar informação muito diversa

de forma inespećıfica, há claramente prinćıpios que regem esses circuitos,

tornando-se fundamental e urgente encontrar modelos genéricos que permi-

tam tirar partido dessa universalidade. A tremenda complexidade do sistema

requer um certo grau de abstracção, embora não seja ainda claro ou consen-

sual quais os detalhes biológicos pertinentes para a computação e quais os

que podem ser descartados.

Os modelos mais comuns de redes neurais artificiais tornam-se inadequa-

dos quando o objectivo é modelar realisticamente microcircuitos neuronais

genéricos. As tradicionais redes feed-forward constituem bons modelos para

as “linhas de transmissão” do sistema nervoso, por exemplo, e as redes as-

sociativas, baseadas em atractores podem ser relevantes para a análise de

determinados processos cognitivos que requerem maior estabilidade da in-
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formação codificada (como memória a longo prazo), no entanto, são modelos

insuficientes, imprecisos e incapazes de processar em tempo real, sinais não

lineares contendo dependências temporais. Mais adequados são os modelos

recorrentes, no entanto os custos computacionais envolvidos nos algoritmos

de treino de muitos destes modelos tornam proibitivo o seu uso.

Uma abordagem recente para treinar redes neurais recorrentes de forma

não supervisionada, denominada “computação em reservatório”, surgiu, por

um lado da área da neurobiologia (sob o nome de liquid state machine (LSM))

como um sistema capaz de processar em tempo real sinais não lineares, al-

tamente variáveis e, por outro, da área da engenharia (sob o nome de echo

state network (ESN)), pela necessidade de usar redes neurais recorrentes

numa série de aplicações que envolvem processamento temporal. Esta abor-

dagem apresenta-se actualmente como o paradigma dominante nesta área

e, devido à sua simplicidade e facilidade de implementação tem atráıdo a

atenção de diversos domı́nios da ciência nos últimos anos e diversos modelos,

com complexidade variada e direccionados para diferentes propósitos, têm

vindo a surgir como extensões do paradigma inicial.

A ideia consiste em construir um grande reservatório de neurónios artifici-

ais (pelo menos 100) e excitá-lo passivamente com um sinal (uma sequência

temporal). O reservatório funciona assim como um filtro não linear. As

conexões internas do reservatório mantêm-se sem treino, sendo o treino das

ligações do reservatório a um neurónio de leitura externo o único procedi-

mento supervisionado. Este treino consiste apenas na resolução de um sis-

tema de equações lineares, o que pode ser feito com métodos simples de

regressão linear.

Para além de procurar melhorar a qualidade e estabelecer regras para

a construção dos reservatórios (que são largamente constrúıdos ao acaso,

por tentativa e erro), uma das questões de mais intensa investigação neste

domı́nio, é a criação de mecanismos de adaptação e aprendizagem não super-

visionada, procurando mimetizar os mecanismos de plasticidade encontrados

no cérebro.

De facto, uma das mais importantes caracteŕısticas das redes biológicas

é a sua adaptabilidade. Vários mecanismos de plasticidade operam em si-
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multâneo para moldar as propriedades estruturais e funcionais dos seus com-

ponentes em resposta à actividade e experiência. Como tal, o estudo da neu-

roplasticidade é fulcral quer do ponto de vista da neurociência computacional,

quer do ponto de vista da engenharia e inteligência artificial. Tradicional-

mente, os modelos de plasticidade em redes neurais focavam-se maioritaria-

mente na sinapse, em fenómenos como potenciação e depressão a longo prazo.

Nos últimos anos têm surgido várias implementações de outros mecanismos

de plasticidade, em paralelo com os avaços da neurobiologia, para treino

dos reservatórios, como plasticidade intŕınseca e outros mecanismos home-

ostáticos. No entanto, muitas tentativas não têm atingido o sucesso esperado,

particularmente quando se procura modelar vários mecanismos operando em

sincronia (como é sabido acontecer nas redes biológicas).

Nesta tese analisamos as propriedades dinâmicas de um modelo de reser-

vatório previamente proposto, composto por simples neurónios cujo estado

de activação é binário e/ou linear (excitatórios e inibitórios), em que a

população excitatória é dotada de 3 mecanismos de plasticidade operando

em simultâneo: spike-timing-dependent plasticity (STDP) e normalização

sináptica alteram os pesos das sinapses e, simultaneamente, um mecanismo de

plasticidade intŕınseca (IP) faz variar os limiares de excitação dos neurónios,

de forma a distribuir a actividade de forma idêntica por todos os neurónios

da rede. Dessa forma, o reservatório auto-organiza-se em resposta ao sinal

que recebe, neste caso sequências de śımbolos desenhadas para testar as car-

acteŕısticas de memória, dependência de contexto temporal e capacidade de

representar os diferentes śımbolos em diferentes trajectórias neurais (padrões

de actividade). Estas redes são então comparadas com redes equivalentes

mas estáticas (sem plasticidade), sendo claramente demonstrada a vantagem

da presença da plasticidade.

Ao longo da tese são analisadas diferentes propriedades destas redes, como

a separação (determinada por análise de componentes principais e cluster-

ing efectuados à matriz de activações), a aproximação ou performance do

mecanismo de leitura, a criticalidade da dinâmica da rede (como medida

de estabilidade, determinada como resposta a perturbações externas), bem

como as várias alterações introduzidas pelos diferentes mecanismos de plasti-
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cidade, individualmente e em conjunto. É demonstrado que as redes dotadas

de plasticidade são claramente superiores na capacidade de separar os difer-

entes śımbolos apresentados em diferentes trajectórias neurais. Para além

disso, há uma clara vantagem no uso dos três mecanismos em simultâneo,

sendo que a ausência de qualquer um deles, ou o seu isolamento, conduzem

a rede a desenvolver um comportamento mais instável, com impacto em di-

versos parâmetros relevantes.

Palavras-Chave: Redes Neurais Recorrentes, Computação em

Reservatório, Neuroplasticidade, Processamento de Sequências, Séries

Temporais, Auto-Organização
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1
Introduction

I don’t have any solution, but I certainly admire the problem.

– Ashleigh Brilliant

The human brain is a remarkably complex dynamical system, composed of

approximately a hundred billion individual neurons, each of which connected

to another thousand to ten thousand neurons, all embedded in a mesh of

glia cells (which also play an active functional role pertaining to the system’s

computations [31, 118]). While a lot is known about the basic components

of the nervous system, significant insights into how they come together, and

which operational constraints allow for the emergence of complex, coherent

activity is a tremendous challenge and is widely acknowledged as one of the

major tasks facing modern science.

The reasons to pursue this goal are obvious: the computations performed

result in nothing less than human cognition and behavior, thus outperform-

ing any current engineered artificial or machine learning system; the appli-

cation of principles guiding neuronal information processing to computing

and robotics holds the promise of revolutionizing technology; from an ap-

plied point of view, a rational approach to psychiatric and neurological ill-

ness requires a thorough understanding of the system’s components and their

1



interactions.

This endeavor has become more urgent in the past few years, with the

emergence of new experimental methods that not only provide rich datasets

for network analysis, but also allow for a precise manipulation and control of

their components, a control that is only precluded by a lack of understanding

of the operational principles involved.

The work presented in this thesis holds no promise of originality. It mainly

reviews and recreates a previously presented neural network architecture (a

self-organizing recurrent neural network), whose dynamics and organizational

principles are guided by simple plasticity rules, operating synergistically.

The thesis is organized as follows:

Chapter 2 – This chapter presents an overview of the fundamental biologi-

cal background that serves as a basis for the construction of the models

used throughout the thesis. These include a general explanation of neu-

ronal networks and their organization and dynamics; neuroplasticity,

focusing on the empirical data that supports the 3 adaptive mecha-

nisms used in the model, and how they operate in neurobiology; and

the processing of spatiotemporal information as evolving neural trajec-

tories.

Chapter 3 – This chapter focuses on network models and their evolution

over the past 50 years or so. It starts with a brief historical review,

outlining the most relevant contributions to the field, stemming both

from neuroscience and artificial intelligence (AI). Then the most promi-

nent models and their characteristics are described, starting with the

traditional feed-forward networks (FFNs) to the currently dominant

paradigms used both in computational neuroscience and machine learn-

ing applications.

Chapter 4 – This chapter contains a description of the models and analysis

methods used throughout the thesis, their formalization and implemen-

tation (included, for completeness in appendices B and C).

2



Chapter 5 – This chapter describes and analyzes the relevant results ob-

tained from the simulation studies conducted, starting from the spec-

ification of the appropriate parameters (tuned to the highest readout

performances) and using those parameters to analyze the properties of

dynamic versus static reservoirs in different settings.

3



2
Biological Inspiration

Science has shown you that ‘you’, your joys and your sorrows,

your memories and your ambitions, your sense of identity and

free will, are in fact no more than the behavior of a vast assembly

of nerve cells and their associated molecules. As Lewis Carroll’s

Alice might have phrased it: ‘You’re nothing but a pack of neu-

rons.’

– Sir Francis Crick

2.1 Neurons and Neuronal Networks

Understanding neural dynamics is an incredible challenge due to the stagger-

ing complexity and diversity encountered at every level of description of the

brain: from the dynamic gene regulation to cognition and behavior, several

layers of adaptable systems operate upon one another, making it extremely

difficult to discern which biological facts are essential to the system’s opera-

tion and which can be regarded as artifacts of biological evolution.

Each individual neuron is unique and presents, on its own, a complex,

dynamic range of behaviors, determined by its specific cellular and synaptic

properties [97, 96]:

Cellular properties — include spike threshold (voltage at which a spike

is generated); excitability (number or frequency of spikes evoked by

4



2.1. NEURONS AND NEURONAL NETWORKS

an input); spike frequency adaptation (reduction in excitability during

repetitive activity); post-inhibitory rebound (increased excitability af-

ter inhibition is removed); plateau potentials (sustained spiking that

outlasts the input that triggered it).

Synaptic properties — include input sign (excitatory or inhibitory), am-

plitude and time-course; activity-dependent properties (section 2.2).

Figure 2.1: Left: Dissociated culture of hippocampal neurons. Right: Dendritic spines
in a hippocampal CA1 neuron filled with calcein (a, c) and in a Purkinje neuron loaded
with fluorescein dextran (b, d). Images obtained by 2-photon laser scanning microscopy
([91]).

All these properties are in turn influenced by the dynamics of their molec-

ular substrates: with over 143 genes coding for voltage-gated ion channels

(VGICs) [137]; over 200 substances acting as neurotransmitters [97]; and the

even greater diversity introduced by post-translational modifications, alter-

native RNA splicing and the varying combinations of channel subunits. Even

with the simplification of a binary representation (active or inactive neurons),

the number of possible network configurations exceeds the ‘absolute number

of elementary particles in the universe’ [106].

Nonetheless, the neocortex has some discernible universal properties, both

structurally and functionally. It is organized in a hierarchical and modular

5



2.1. NEURONS AND NEURONAL NETWORKS

architecture. Each module (the hypercolumn) displays a general six-layer

architecture [87, 109] and a certain regularity in connectivity between layers

(although the connectivity, at the local circuit level, appears to be stochasti-

cally guided rather than follow a specific ‘plan’). These circuits also appear

not to be task-specific, i.e., the same ‘generic’ microcircuit can perform very

diverse computations [76]. One should strive to take advantage of these uni-

versal properties and try to deduce the laws governing both the structural

organization and the functional relations, either by theoretical abstraction

and modeling or by carefully designed experimentation.

Figure 2.2: Left: Two confocally reconstructed neurons overlaid on the other pyramidal
neurons in the rat somatosensory cortex. The upper right image shows an axon passing by
a dendrite without forming a synaptic connection, which is verified by paired recordings.
The lower right image shows an axo-dendritic synapse. Image reproduced from [62]. Right:
General lamina-specific cortical microcircuit template used for simulation studies in [51].
Numbers in the arrows denote connection strengths and connection probabilities based on
various sources of experimental data. Each layer consists of an excitatory and an inhibitory
population.

6



2.2. NEUROPLASTICITY

2.2 Neuroplasticity

Neuronal networks are extremely versatile. The structural and functional

properties of network components are the subject of activity-dependent adap-

tation. Structural modifications refine network topologies and connectivity

patterns, either by selective synaptic generation and pruning [119, 115, 20],

or by targeted neurogenesis [63, 25] (albeit limited in adult systems). Func-

tional changes allow for purposeful computations to take place by adjusting

synaptic strengths and intrinsic physiological properties.

One of the primary sites of functional adaptation in the nervous system is

the synapse. Synapses reveal a great morphological and molecular diversity,

with several of its components known to be subjected to activity-dependent

modulation (number and probability of neurotransmitter release, receptor

type, number and density of receptors, channel conductance and kinetics,

etc.) [96]. The duration of changes in synaptic strength can span a wide

range of timescales, from a few milliseconds to several hours, days or even

longer. It is thus not surprising that synapse-specific Hebbian plasticity1 [44]

(long-term potentiation (LTP) and long-term depression (LTD)) became the

most well known and established basis of learning and memory in the brain

(for reviews, see [8, 72, 68]).

But, over the past few years, additional forms of plasticity have been

extensively documented (see [89, 1]) and it is now established that many dif-

ferent plasticity mechanisms operate synchronously in the mammalian cortex

(Figure 2.3). The synergy between these different mechanisms has proven to

be crucial in ensuring stability by coordinating and balancing neural activity

and preventing any individual change from having a deleterious effect.

2.2.1 Spike-Timing-Dependent Plasticity

It has long been demonstrated that repetitive synaptic activity can induce

a persistent, long-lasting increase or decrease in synaptic efficacy (usually

1In honor of Donald Hebb (see section 3.1), activity-dependent synaptic plasticity that
depends on pre- and post-synaptic activity is often called Hebbian plasticity or Hebbian
learning.
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2.2. NEUROPLASTICITY

Figure 2.3: Several known plasticity mechanisms in sensory cortical circuits. Circles with
arrows indicate LTP (up), LTD (down), or both, in excitatory (green) and inhibitory (red)
synapses. Excitatory and inhibitory synapses in L2/3 and L4 exhibit synaptic scaling.
IP has been demonstrated in L2/3 and L5 pyramidal neurons. The axons entering L4
symbolize thalamic input. Figure reproduced from [89].

determined as changes in the average amplitude and latency of excitatory

postsynaptic potentials (EPSPs)), a phenomenon known as long-term po-

tentiation (LTP) and long-term depression (LTD). Such synaptic plasticity

can provide a cellular mechanism for experience-dependent modification of

developing neural circuits [39, 114, 70] and for learning and memory in the

adult brain [81]. LTP can enforce associative responses to pre-synaptic firing

patterns that are temporally linked to postsynaptic firing, while LTD can

facilitate the unlearning of such associations, when pre- and postsynaptic

firing are not consistent [120].

Experimental protocols used to induce LTP and LTD in vitro tradition-

ally involved high- or low-frequency stimulation, applied to the entire pre-

synaptic axon tract. But, despite their convenience, these stimulation pro-

tocols are not physiologically realistic, as they usually involve a thorough

culture preparation (for example, preincubation with tetrodotoxin or per-

fusion with zero Mg2+ solution during stimulation [12]). Besides, cortical

neurons seldom fire at the rates used in these protocols [46].

Over the past decade or so, thinking about how synaptic plasticity is
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induced in vivo shifted radically, with the discovery that both LTP and

LTD can be induced at low-frequency, depending only on the precise timing

between pre- and postsynaptic firing. In mammalian pyramidal neurons,

it has been shown that if a pre-synaptic spike precedes a postsynaptic spike

within a narrow time window (≤ 40 ms) this results in LTP; the reverse order

leads to LTD [79, 12, 9]. This means that the relative timing between pre-

and postsynaptic spiking is a factor in determining the direction and extent

to which those changes occur (Figure 2.4). The term spike-timing-dependent

plasticity (STDP) was then introduced, referring to this observation that the

precise timing of spikes affects the sign and magnitude of synaptic plasticity.

The discovery of STDP led to a quantitative formulation of Hebbian plas-

ticity rules, representing a major advance over previous means of studying

synaptic plasticity. As a consequence, the quality and physiological plausi-

bility of experimental in vitro stimulation protocols improved [1], along with

the development of timing-based theoretical models and learning rules.

Figure 2.4: Critical time window for the induction of synaptic potentiation and depres-
sion. The precise spike timing determines the size and magnitude of EPSC change. Figure
reproduced from [12]

STDP is often interpreted as the most comprehensive learning rule for a

synapse, determining how individual synapses participate in circuit function

by introducing competition: groups of synapses that are effective at rapidly

9



2.2. NEUROPLASTICITY

generating postsynaptic spikes are strengthened by STDP, making them even

more effective at controlling the timing of postsynaptic spikes. This compe-

tition assures that only the synapses that consistently take part in eliciting a

postsynaptic response are maintained and strengthened, thus creating input

selectivity and a primary form of memory in neuronal circuits.

Functionally, STDP allows neurons to detect which of their afferent in-

puts are relevant for eliciting a spike (the ones that arrive within the time

window over which the neuron integrates its inputs) and which are the result

of random fluctuations. The former will be strengthened, while the latter

weakened [33, 1]. This makes obvious sense: given the high connectivity

involved, random ‘coincidences’ are bound to occur.

The precise mechanisms that make synaptic plasticity sensitive to spike

timings are not entirely understood, but seem to depend on a complex inter-

play between NMDA receptor activation and the timing of backpropagating

spikes [1]. LTP and LTD are known to be mediated by NMDA receptors. Re-

cent studies showed that the underlying biological pathways for each of them

are mechanistically distinct and may, in fact, involve different subpopulations

of NMDA receptors, activating different signaling cascades [110, 111].

Ultimately, a precise mechanistic explication of STDP will need to take

into consideration the specific synapse involved, its type and location and

the modulatory changes it is subjected to.

Nevertheless, the introduction of sensitivity to spike timing into Hebbian

plasticity has a host of interesting implications as a learning mechanism for

generating neuronal responses selective to input timing, order and sequence,

making STDP the most relevant synaptic plasticity mechanism for study-

ing temporal processing in neuronal circuits. Also, given that the synaptic

increments or decrements are small (infinitesimal learning), the impact of

stimulus history can be accounted for by this learning rule, as it takes some

time to build up a ‘noticeable’ effect.

10
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2.2.2 Intrinsic Plasticity

Studies of neuroplasticity usually focus on synaptic plasticity and, un-

til recently, activity-dependent modifications were ascribed exclusively to

synaptic changes. But, it is now clear that experience produces enduring

alterations in the neuron’s intrinsic excitability, directly affecting its input-

output function and, consequently, network behavior (Figure 2.5). Empirical

evidence for this phenomenon has been observed in many different species,

in distinct brain areas and for a great variety of neurons [138, 24, 21, 78, 14].

It is usually measured as a change in the neuron’s frequency-current (f-I)

function, manifested as alterations in the spike threshold, spike accommo-

dation2 and the amplitude of burst-evoked afterhyperpolarization3, resulting

from changes in the function and responsiveness of VGICs [24, 138].

The precise mechanisms are not entirely known, but several possibilities

have been referred in the literature (Table 2.1). VGICs participate in various

different signaling pathways and their distribution and density throughout

the membrane is not uniform nor static, so the mechanisms underlying in-

trinsic plasticity (IP) are likely to be diverse and to depend on an interaction

of several components.

In some reported cases, training-induced IP was accompanied by per-

sistent changes in synaptic strength within the same neuron or in related

portions of a local circuit and it was positively correlated with some mea-

sure of learning [14, 138], leading to the speculation that it might create a

hyperexcitable state responsible for promoting the consolidation of memory

by facilitating synaptic plasticity. It is thus often called a “metaplastic”

phenomenon.

The adjustments made by IP, together with scaling phenomena (subsec-

tion 2.2.3), help the neuron to regulate the transduction of its synaptic inputs

homeostatically, while maintaining its relative responsiveness in periods of

intense activity.

2The cessation of spike firing despite constant depolarization above threshold[138]
3Transient phase of hyperpolarization after an activity burst (such as epileptiform ac-

tivity), inhibiting the neuron from firing for a while
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2.2. NEUROPLASTICITY

Figure 2.5: Chronic activity blockade of pyramidal neurons changed their firing frequency
and lowered their threshold. (a) Spike trains evoked by somatic current injection. (b)
Average f-I curves, plotting the instantaneous firing frequency versus the amplitude of
injected current. (c) The effect size depends on the duration of the blockade. (d) Reduction
in spike threshold: IT is the minimum current necessary to elicit a spike; VT is the threshold
potential and Vm the resting potential. Figures reproduced from [24]

Receptors /
Ion Channels

Effectors Enzymes Functional
Targets

Voltage-Gated
Ca2+ channels

Ca2+ PKC K+ chan-
nels (several
different types)

NMDARs G-Proteins CaMKII Na+ channels
mGluRs Adenylyl

Cyclase
Ca2+ channels

mAChRs Guanylyl
Cyclase

Others

5HTRs nNOS, PKA,
PKG, MAPK
...

Table 2.1: Potential molecular signals and substrates involved in neuronal intrinsic plas-
ticity. Table reproduced from [138].
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2.2.3 Synaptic Scaling

Neocortical neurons can detect changes in their own average firing rates

through a set of calcium dependent sensors involved in the regulation of func-

tional glutamate receptor synthesis and trafficking [69, 125, 126].

Figure 2.6: Variation in quan-
tal amplitudes of mEPSCs recorded
from cortical pyramidal neurons in
cultures that experience normal lev-
els of spontaneous activity (control
amplitude) plotted against ampli-
tudes in sister cultures in which
activity was either blocked with
tetrodotoxin (TTX) or enhanced
with bicuculline (BIC) (by block-
ing inhibition), for 2 days. Activity
blockade scales up mEPSC ampli-
tude, whereas enhancement scales it
down. The fact that, in both cases,
the plots are well fit by straight lines
indicates that the scaling is multi-
plicative. Figures reproduced from
[1], adapted from [124].

In so doing, these neurons maintain the

average firing rates by distributing synap-

tic strengths, ensuring that neuronal activ-

ity does not saturate. This scaling phe-

nomenon involves a proportional regulation

of all of a neuron’s synapses, allowing the

neuron to preserve its synapse-specific differ-

ences established by Hebbian plasticity, that

presumably encode information, thus ensur-

ing that neuronal activity remains within a

functional range.

This phenomenon has been observed in

cultured networks of neocortical [124], hip-

pocampal [69] and spinal cord [93] neu-

rons, where pharmacological manipulation

caused a multiplicative increase or decrease

in mEPSCs (Figure 2.6). Increases in synap-

tic strength during periods of low activ-

ity have been associated with a decrease

in the turnover rate4 of AMPA receptors

(Figure 2.7). NMDA-receptor-mediated glu-

tamatergic synaptic transmission has also

been linked to synaptic scaling [134], which

implies that the scaling phenomenon may

have an impact on Hebbian mechanisms. If neurons scale down NMDA re-

ceptor currents in response to enhanced activity, this may make it harder to

evoke LTP and easier to evoke LTD.

4Ratio between insertion and removal rates.
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2.2. NEUROPLASTICITY

Activity stabilization during developmental processes, for example, have

been partially ascribed to synaptic scaling [126], with the readjustment of

a neuron’s synaptic strengths as a fundamental mechanism to deal with the

increasing number of inputs the neuron receives during synaptogenesis.

Figure 2.7: Synaptic scaling is accompanied by changes in the accumulation of AMPA
receptors at synaptic sites, as well as the turnover of scaffolding proteins that tether AMPA
receptors to the cytoskeleton. One possible mechanism for such changes is that activity
targets the rate of constitutive receptor insertion, so that increased activity reduces this
rate (dashed arrow) whereas reduced activity increases this rate (wide arrow). The number
of receptors at the synapse is the result of a dynamic equilibrium between insertion and
removal rates. If the insertion rate doubles (reduced activity), each synapse will reach
a new steady-state level of receptor accumulation that is double the initial value at that
synapse. Conversely, if the insertion rate is cut in half (increased activity), each synapse
will end up with half the initial number of receptors. Figure and results reproduced from
[127].
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2.3 Temporal Processing and Transient Dynamics

All natural stimuli have an inherent spatiotemporal structure. Sensory per-

ception depends critically on the ability of the sensory ‘modules’ to represent

and process those spatial and temporal features. The distinction between

spatial and temporal content is relevant, since they are likely to be processed

in fundamentally different ways [17], for which no general computational

framework exists [18].

The dominant approach to systems neurobiology has been to correlate

spiking patterns (number and timing) in defined neuronal populations with

specific aspects of perception and behavior. It is now clear that this is not

a well constrained problem and there is a need to dig deeper in order to un-

derstand how neuronal networks extract relevant information about a given

stimulus from the spatial and temporal structure of the complex spiking pat-

terns elicited in response to said stimulus. Analysis and modeling have been

largely biased towards the spatial components of stimuli, focusing on the

responses of neuronal populations defined mainly by the location of sensory

afferents and on the ability of such networks to develop selective responses

to the spatial aspects of stimuli. This approach led to the discovery of place

codes and maps in the early sensory stages (retinotopy [82], somatotopy [94],

orientation selectivity (Figure 2.8) [113, 112, 19], etc.).

But neuronal responses are largely influenced and depend on the temporal

features of stimuli as well [22, 23]. Sensory information about a constantly

changing environment has to be gathered and integrated over different time

scales, in order to allow for the construction of a stable percept [49]. Temporal

information is crucial, for example, to [18]:

Visual System – object motion direction and velocity and intervals be-

tween sensory events (Figure 2.10) [90].

Somatosensory System – motion detection; object and texture discrimi-

nation [86].

Auditory System – spectral and temporal structure of vocalizations, au-

ditory context and speech processing [7, 16].
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Figure 2.8: Examples of stimuli and optical responses recorded from the cat’s visual
cortex for two orientations and five contrasts. A: A subset of the stimuli used, which
included four or more orientations and in some cases additional contrasts. B: Optical re-
sponses, scaled by subtracting response to blank screen, and dividing by maximal recorded
response. Dark shading represents activation. Figures reproduced from [19].

Figure 2.9: Representation of the responses evoked by 2 odors (citral and geraniol) in
populations of projection neurons in the locust antennal lobe. A: Responses from 87 PNs
are divided in 50 ms bins and the spikes in each bin counted. The resulting consecutive
87D vectors are then linked, generating trajectories. B: By dimensionality reduction, the
trajectories can be plotted in 3D space. Procedure and figures reproduced from [15].
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Olfactory System – odor identity and concentration (Figure 2.9) [15].

Recent models of cortical activity reflect the fact that temporal and spa-

tial processing are inextricably linked. These state-dependent network mod-

els are capable of encoding information in the form of evolving neural trajec-

tories (through the network’s state-space) and suggest that spatiotemporal

computations emerge naturally from the inherent dynamics of cortical net-

works.

The notions of state-dependency and state-space stem from dynamical

systems theory, an approach that basically allows one to study these com-

plex systems without knowing all the details that govern their evolution. A

dynamical system can be described by a set of variables that represent its

state at any given point (the state variables) as well as the laws that describe

the evolution of the state variables with time (the state equations) [53]. The

state of the system is, in essence, an explicit account of the values of its

internal components, in this case, the activation state of the neurons in the

circuit. The set of all possible states of the system is called the state-space,

where each state corresponds to a unique point. The system’s evolution with

time, creates a trajectory through this state-space.

The traditional hypothesis in neurodynamics is that of stable attractor

states as supporting neural computation, i.e., upon some input signal, net-

work activity gradually converges to some point in state-space (in which neu-

ronal firing rates remain constant for a given period). This concept should

not be disregarded (attractor states are known to play a role in higher-order

cognitive processes [18]), but it is unlikely to contribute to sensory processing

in real-time and in the presence of ever-changing sensory information.

The general framework discussed here, emphasizes the idea of transient

dynamics, where computation is carried out over time without any need for

stable states. The system never attains a true steady-state but, instead, is

in a constant state of adaptive self-organization, a state that is inherently

transient [26, 49].

“Brain activity is characterized by a high-dimensional chaotic

ground state from which transient spatio-temporal patterns briefly
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emerge (...) It is the transient dynamics, rather than any state

eventually reached that is at the heart of the computational process.”[26]

This view is consistent with experimental data and well suited to explain

the most complex forms of sensory processing. The measured responses from

a neuronal population are known to be the result of a complex interplay

between stimulus characteristics and the network’s internal state [4, 18]. If

driven by ongoing external stimulation, network activity will evolve in a com-

plex neural trajectory (Figure 2.9). Different stimuli elicit different trajec-

tories, the characteristics of which are driven both by the stimulus structure

and by the internally generated dynamics (resulting from the highly recurrent

connectivity of the circuit) [18]. Even when the stimulus is static, the trajec-

tories that represent the network’s activity continue to dynamically evolve

[15, 100], meaning that further stimulus characteristics are being processed

(like intensity, or duration). Besides, the succession of states visited by the

system is stable in the presence of noise and reliable, even in the face of small

variations of the initial conditions [100].

Theoretically, the information contained in the local circuit’s trajectories

can be extracted by read-out neurons, located at specific sites to serve as

relays, conveying the information to the downstream circuitry to which they

project. The higher the dimensionality of the input space to these neurons,

the easier it is for them to decode the activity patterns [18]. Although this

can easily be achieved in theoretical studies (by finding the read-out synaptic

weights through an appropriate learning rule), evidence for this phenomenon

in vivo are still lacking.

State-dependent network models (see subsection 3.3.2), provide the key

to begin to understand cortical function and how information is reliably

represented, extracted and conveyed in cortical networks.
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Figure 2.10: Population responses of neurons in the cat visual cortex upon presentation
of sequences of symbols. a: Example stimulus, superimposed with the receptive fields of
the recorded neurons. b: Raster plot and PSTH from one neuron over 50 trials, upon
presentation of the sequences A, B, C (left) and D, B, C (right). c: Responses recorded
from 64 neurons in trial 38 with sequence A, B, C and the readout mechanism used to
decode information from those 64 spike trains. Each spike train was low-pass filtered with
an exponential and sent to a linear classifier. d: Classifier’s performance at various points
in time and average firing rates. The red trace shows the percentage of trials in which the
readout correctly classified the initial symbol as being A or D. The classifier was able to
readout this information for up to 700ms after stimulus presentation. Figures reproduced
from [18], adapted from [90].
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3
Neural Network Models

Swiftly the head-mass becomes an enchanted loom where millions

of flashing shuttles weave a dissolving pattern, always a meaning-

ful pattern though never an abiding one; a shifting harmony of

subpatterns.

– Sir Charles Sherrington

3.1 Historical Notes

Artificial neural networks (ANNs) attempt to capture the essential compu-

tations taking place in the dense, intricate biological neural networks, while

providing a much sought symbolic formalism for their analysis. When the

first models emerged, the prevailing belief was that of elementary logic as the

foundation of neural computations. Guided by this belief, and following the

ideas of Alan Turing [123], McCulloch and Pitts designed and built a prim-

itive ANN, using simplified ‘binary’ neurons [83]. Each neuron implements

a simple threshold operation, comparing the weighted sum of all its afferent

connections to a given threshold and providing a binary output (Figure 3.1).

It is generally agreed that their work gave rise to the disciplines of neural

networks and AI.
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Figure 3.1: Schematic representation of the
McCulloch-Pitts model neuron, the first mathemati-
cal model of an artificial neuron.

In 1949 Donald O. Hebb

published The Organization

of Behavior, where the first

concrete proposal of self-

organization in the brain as

supporting cognition and be-

havior was introduced, stat-

ing that specific synaptic

changes may underlie learn-

ing. He postulated that the

effectiveness of a synapse be-

tween two neurons increases by repeated co-activation:

“Let us assume then that the persistence or repetition of a re-

verberatory activity (or trace) tends to induce lasting cellular

changes that add to its stability. The assumption can be pre-

cisely stated as follows: when an axon of cell A is near enough

to excite cell B and repeatedly or persistently takes part in firing

it, some growth process or metabolic change takes place on one

or both cells so that A’s efficiency as one of the cells firing B is

increased.”[44]

In 1958, Frank Rosenblatt proposed a novel method of supervised learn-

ing for pattern recognition, the Perceptron Convergence Theorem [104]. The

Perceptron was the first ‘practical’ ANN. His work was based on the premises

that the connections in the brain do not initially allow useful computations

to be performed; order ought to be brought into the system by learning. The

Perceptron was a linear classifier with a simple input-output relationship

(feed-forward mapping) composed of McCulloch-Pitts neurons [101]. Given

their simplicity, work on the perceptrons grew rapidly and new training al-

gorithms were soon developed.

In the meantime, neuron models evolved to deal with real-valued inputs

and outputs and the threshold activation functions (used in the perceptron)
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were also replaced by linear input-output mapping (Adaline1) or non-linear

functions (like the sigmoid, used in multi-layer perceptrons (MLPs)).

In the 1970s, Self-Organizing Maps (SOM) were introduced by Teuveo

Kohonen, using competitive learning and motivated by the topographic or-

ganization of the brain’s sensory system. These models introduced the “dis-

tance neurons”, where the activation function was applied to the distance

between the weights and inputs (‖ X −W ‖) (Figure 3.2B), instead of their

inner product (< X,W >) (Figure 3.2A). Although there is no real difference

in computational power, the neighborhood functions allowed these networks

to preserve the topological properties of the input space, making them useful

for visualizing low-dimensional views of high-dimensional data.

A B

Figure 3.2: Variants of neuron models with different activation functions. Figures re-
produced from [98].

In 1982, John Hopfield presented a paper in which he stated that the

approach to AI should not be to purely imitate the human brain, but to

use its concepts to build machines that could solve dynamic problems [47].

He introduced one of the first types of recurrent connectivity in ANNs (sec-

tion 3.3). The Hopfield networks were controlled by constructing very specific

topologies with symmetrical weights and were operated by applying a fixed

input pattern. Under certain conditions (and after a sufficient time interval),

the network ‘settles’. This means that the system’s output has converged to

some activation pattern which is considered the result of the computation.

This result is some association made by the system in response to the input,

hence the name associative network. The process of arriving at the output is

called relaxation dynamics, and can be expressed with the help of an energy

1Adaline (Adaptive Linear Elements), was the first trainable neural network to be
applied to real-world problems
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A B

Figure 3.3: The Hopfield network. A: Schematic representation of the network topol-
ogy (crossbar representation); B: Schematic landscape in a fictitious network space, the
presence of point attractors is highlighted by the red dots.

equation. The local minimum energy states are the network ‘attractors’,

towards which the network converges (Figure 3.3).

These networks have the property of content-addressable memory, which

is described by an appropriate flow through the system’s state-space, i.e.,

the network retrieves a memory from a given input if the activity generated

by that input converges toward the local attractor that represents the orig-

inal pattern. So, after learning a set of patterns, the network could retrieve

a complete pattern given only a sub-part or a noisy version of it as input.

The Hopfield network model was later on extended to neurons that oper-

ate stochastically (borrowing theory from statistical mechanics), called the

Boltzmann machine [45].

Since then, many other models have been proposed, like Vapnik’s Sup-

port Vector Machine, and previous models improved, particularly during the

1990’s. These new network models, along with advances in neurobiology,

gradually began to focus on time, temporal context and temporal sequence

processing [2, 98].

The inclusion of temporal information in network models is central both

from a neuroscience (section 2.3) and from an engineering perspective (given

that many real-world tasks are temporal by nature).
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3.2 Traditional Neural Networks

The classic approach is to use multi-layered, feed-forward network topolo-

gies (FFNs), with unidirectional information flow (Figure 3.4), propagating

the input via weighted connections, through internal (hidden) layers of neu-

ral amplifiers to an output node (or layer), thus functioning as a universal

approximator for any spatially finite input-output relationship [50]. The

Figure 3.4: Schematic representation of the Feed-Forward Network topology

weighted connections between the layers are trained in a supervised fashion,

using a form of error backpropagation2. Since the model requires full con-

nectivity between the layers, the number of connections increases with the

square of the number of nodes, causing the computational efficiency of the

backpropagation algorithm to rapidly decrease. This procedure is commonly

used for static pattern recognition or classification (non-temporal tasks). The

lack of feedback makes each input pattern independent and, upon presenta-

tion of a new input, all information about a previous one is lost. While

this is beneficial in some cases, it is clearly unsuitable for realistic neuronal

modeling, where temporal information is crucial (section 2.3).

Several attempts have been made to extend FFNs to temporal data pro-

cessing [30, 29], by transforming the temporal problem into a spatial problem.

However, this requires unfolding layers (the number of which is dependent

upon the input length), becoming prohibitive in terms of computational costs

2The network’s output in response to a given input is compared to a target value and
their difference is then used to modify the weights, in order to minimize the output error
below a certain threshold.
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and processing time. Besides, it is clearly not close to the “biological solu-

tion” to the problem.

3.3 Recurrent Neural Networks

The obvious solution for the temporal coding problem is to endow the net-

work with recurrent connections (Figure 3.5). The neurons can remain active

after the input presentation, which confers the network a self-sustaining tem-

poral activation [71]. By representing temporal sequences as a flow of network

Figure 3.5: Schematic representation of the Recurrent Network topology. The network
contains directed cycles that feed its activity back serving as additional inputs, radically
transforming the system into a, potentially very complex, dynamical system.

activity and not as an additional spatial dimension, recurrent neural networks

(RNNs) can handle temporal information directly and naturally. Other ca-

pabilities include an associative memory [47, 103, 48, 84] and optimization

capacity [13].

The overall advantages of RNNs can be summarized as [129]:

� Robust

� Capable of learning by example (generalization)

� Capable of modeling highly nonlinear systems (for which concrete,

tractable models are hard to obtain)

� Inherently capable of temporal processing
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From a computational neuroscience perspective, RNNs constitute a good

model, given that biological brain modules almost universally exhibit recur-

rent connection pathways. But, although their potential is widely acknowl-

edged, their application has remained limited, because of several constrains

[32, 129, 71]:

High computational costs – the traditional gradient-descent based meth-

ods3 are difficult to employ as a training procedure and many update

cycles are required to generate any single update parameter. Besides,

their optimization requires substantial skills and expertise to be suc-

cessful.

Limited number of available learning rules – dependencies requiring long-

range memory are inherently hard to learn [10].

Slow convergence rates – the network’s dynamics goes through bifurca-

tions4, making it difficult to guarantee convergence.

3.3.1 Evolution of the paradigm

The first algorithms used to train RNNs (and also the most common in

FFNs) were based on the iterative update of all weight values according to

an estimated error gradient [40, 105, 71]: ∂E
∂W

, in order to minimize E =

E(y, ytarget).

Based on this procedure, the first proposed methods for RNNs were back-

propagation through time (BPTT) [135] and real time recurrent learning

(RTRL) [136]. BPTT is based on the transformation of the RNN into a

FFN, where classical BP algorithms can be applied. At every time step of

the training sequence, a new layer is constructed as a copy of the sets of

internal units in the RNN. The connections between units are transformed

into connections between layers. Each layer also receives connections from

3Also known as steepest descent, it’s a first order optimization algorithm that finds the
local minima of a given function and uses it to iteratively reduce the training error

4A bifurcation occurs when a small change made to the parameter values (the bifur-
cation parameters) of a system causes a sudden ‘qualitative’ or topological change in its
behavior

26



3.3. RECURRENT NEURAL NETWORKS

the input at the respective time. The weights are subsequently updated us-

ing classical backpropagation. This method has a runtime complexity5 of

O(N2
x), per weight update, per time step, for a single output.

RTRL consists on the computation of the exact error gradient in a re-

cursive way. The derivatives of the states with respect to the weights are

computed first, using the results of a time step k to get the derivatives at

k + 1. The procedure computes the gradient through forward recursion in

time. Hence, one advantage of this algorithm is that it can be used online,

so that the weights are adapted as the new training patterns are introduced.

The runtime complexity of RTRL is O(N4
x).

A major change in RNN algorithms was the Atiya-Parlos recurrent learn-

ing (APRL) method [5], proposing a fundamentally different approach. In

APRL, training is treated as a constraint optimization problem [40]. The

error gradient is computed with respect to the neuron’s activation states, in-

stead of the connection weights (∂E
∂x

). Once the desired change to the states

is known, a proportional change to the weights is computed. So, the weights

are gradually adapted to move x into the desired directions [71]. This algo-

rithm partially solved some of the problems with RNN training, allowing a

much faster convergence to the solution.

As an extension and refinement of the APRL, the Backpropagation-

Decorrelation (BPDC) algorithm was proposed as an online iterative training

method [116, 117]. It resulted from a careful analysis of the weight dynamics

of the APRL algorithm, that demonstrated that the input weights and the

internal weights change at a different pace. APRL decouples the RNN into

a fast adapting output (Win changes rapidly) and a slowly adapting reser-

voir (W changes slowly) [71]. The BPDC algorithm is capable of tracking

fast-changing signals, but quickly forgets previously seen data. The great

novelty introduced by this algorithm was the fact that the focus of train-

ing moved from the entire network towards the output weights (Figure 3.7).

This method emerged almost simultaneously with the echo state network

(ESN) approach and is thus frequently included in the domain of reservoir

5Used to describe the limiting behavior of a function when the argument tends towards
a particular value or infinity.
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computing (subsection 3.3.2).

So, in summary, the evolution of training algorithms for RNNs was:

� Classical BP

� BPTT/RTRL

� BPDC

� ESN/LSM

3.3.2 Reservoir Computing

A fundamentally different approach to use RNNs has been proposed in-

dependently by Herbert Jaeger, under the name of Echo State Networks [54]

and by Wolfgang Maas, under the name of Liquid State Machines [73].

A B

Figure 3.6: Schematic representation of the Echo State Network (A) and the Liquid
State Machine (B), as originally depicted by their authors [54, 73].

The two models stem from different perspectives. LSMs have their origin in

neurobiology and are intended to serve as models of generic cortical micro-

circuits, whereas ESNs were aimed at solving engineering problems. Despite

their differences, they are very similar, on an abstract level, which led to the

introduction of the term Reservoir Computing [131, 107] as a general term

for this kind of approaches and their subsequent variants.

The main idea is to use random, sparsely connected and untrained RNNs

as an excitable medium (the reservoir), composed of a large set of neurons
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A B

Figure 3.7: Contrast between the traditional gradient-descent based methods for training
RNNs, where all connection weights are adapted during training (A) and the RC approach,
where the only training required is to the output weights (B). Illustration reproduced from
[71].

(typically > 100) to give a “rich set of dynamics to combine from”[54]. The

reservoir is passively excited by the input data, which is then stored in the

reverberating activity patterns. Those patterns are then fed to a memoryless

readout neuron (or layer).

In this setup there is only a need to train the output weights in a super-

vised fashion, from the reservoir to the readout, and this can be done using

very simple regression techniques. Once the readout has been sufficiently

trained, it is robust against noise in the input data, displaying very good

generalization capabilities [74, 34]. The reservoir is left untrained, function-

ing as a nonlinear filter.

This is a simple, but powerful “black-box” approach, that has attracted

a lot of attention in the last couple of years, from very diverse fields of

research [56, 131, 57, 58, 130], and constitutes the dominant paradigm for

RNN modeling. Besides, this type of model is extremely well suited for

neuro-inspired modeling, given that the reservoir can be used independently

of the exact nature of its constituents, thus allowing several studies to be

performed using increasingly accurate neuronal models [51, 75].

Nonetheless, the RC approach has been criticized mainly for not being

principled enough, i.e., for not having a generally agreed upon ‘recipe’ that

can be used regardless of the intended application [102, 99]:

� The choice of parameters (like connectivity parameters) is a crucial
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step in constructing the reservoir, but there are no clear rules for it,

and it is usually achieved through a series of random attempts, relying

mostly on trial and error.

� The random connectivity and internal weight structure is unlikely to

be optimal and does not provide a clear insight into the reservoir’s

dynamic organization, contravening a deeper theoretical investigation.

� It is difficult to specify the properties of the reservoir responsible for its

success because the exact function of some parameters is still poorly

understood.

There have been several attempts to address these issues and devise what

parameters would constitute a ‘good’ reservoir for a given application [95,

102, 58], regularize its construction to improve its implementability [27, 77],

extend its stability by incorporating subreservoirs [60, 129], pre-training the

reservoir in a supervised manner, for example, with evolutionary algorithms

[61, 52] or reinforcement learning, etc. The mainstream research in the field

is currently directed at improving reservoir design and adaptation character-

istics, while attempting to understanding the effect those changes have on

the reservoir’s performance and dynamics [71].

Plasticity

Many extensions of the original networks have been proposed to incorpo-

rate adaptation through plasticity, in a supervised or unsupervised manner.

Because biological brains are endowed with several plasticity mechanisms

(section 2.2), improving reservoirs with local adaptation rules is a natural

strategy. The first attempts to do so focused on classical Hebbian [44] or

anti-Hebbian learning [55], but obtained no success. Introducing modifi-

cations to anti-Hebbian learning, the so-called anti-Oja rule was shown to

slightly improve reservoir’s performance [6].

Liquid state machines (LSMs) have already incorporated realistic synap-

tic models with dynamic adaptation, based on empirical data [80], in their

original appearance [73]. Conferring STDP to the synapse models in LSMs
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was shown to improve the separation capabilities (subsection 4.2.1) for real-

world speech data, but not for random inputs [92].

The addition of IP learning rules has attracted a lot of attention in the RC

community. A biologically inspired and computationally efficient IP learn-

ing rule to adjust neuron’s threshold and gain was originally proposed in

[121] and shown to improve the input-specific information encoding in the

reservoir. This IP rule is local in time and space and attempts to optimize in-

formation transmission by regulating the neuron’s output distribution [117].

It is based on 3 fundamental principles [133]:

� Information Maximization, i.e., the neuron’s output should contain as

much information on the input as possible

� Each neuron has to keep its average output at a certain level, because

the energy available is limited

� Adaptation is realized in the neuron’s intrinsic properties and not in

the connection weights

Of great interest to computational neuroscience is to understand how

different plasticity mechanisms observed in biological brains (section 2.2) in-

teract and what impact they have, operating both individually and synergis-

tically, on the reservoir’s quality. The synergy of IP with Hebbian synaptic

plasticity was shown to result in a better specialization of the neuron in

finding heavy-tailed directions in the input and on the “bars” problem6 (Fig-

ure 3.8) [122]. Combinations of STDP and IP in a LSM-like reservoir were

shown to be more robust to perturbations and to achieve a better short-term

memory and prediction performance [66]. An extension of this work, includ-

ing a third plasticity mechanism, synaptic normalization, was also shown to

outperform static reservoirs [64]. Besides, it was shown that only the syner-

gistic combination of all mechanisms was able to maintain the performance

advantages and overall reservoir quality. Further work on synaptic plasticity

for reservoir computing includes the introduction of a STDP modulated rein-

6A common nonlinear independent component analysis problem
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forcement signal as a reward-based feedback, mimicking biological dopamine

reward modulation [67], among other approaches.

Figure 3.8: Discovery of single bars in the “bars” problem with IP rules. Left plot: fast
IP (ηIP = 0.01,ηHebb = 0.001). Center plot: slow IP (ηIP = 0.001,ηHebb = 0.01). Right
plot: no IP. Without IP, no bar is discovered. Figures reproduced from [122].

A B

Figure 3.9: Impact of different combinations of plasticity in the network’s structure (A)
and on the fading memory property (B). Figures reproduced from [66].
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4
Methods

By three methods we may learn wisdom: first, by reflection, which

is noblest; second, by imitation, which is easiest; and third, by

experience, which is the most bitter.

– Confucius

4.1 Network Definition

The network used throughout this thesis is a self-organizing RNN, as origi-

nally proposed by [64, 65]. This network is composed of NE excitatory and

NI inhibitory neurons (NI = 0.2 × NE), consistent with the known average

neocortical distribution.

Neurons are connected by weighted synapses (with Wij representing the

synapse from neuron j to neuron i), whose initial values are randomly drawn

from the interval [0, 1] and normalized so that the sum of incoming connec-

tion strengths to a neuron is constant(
∑

j Wij = 1). Connectivity in the

excitatory population (WEE) is sparse with a mean number of total connec-

tions a neuron is allowed to establish defined by λW . There’s full connectivity

between inhibitory and excitatory populations (WEI and W IE) and no con-

nections among inhibitory units (Figure 4.1).

The units’ thresholds (TE and T I) are random values initially drawn from

a uniform distribution in the interval [0, TE
max] and [0, T I

max], for excitatory

and inhibitory units, respectively.
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The external input is composed of sequences of symbols (U(t)), repre-

sented as input vectors, whose structure the network is expected to acquire

in an unsupervised manner. Each symbol activates a set of NU input units

(NU = 0.05×NE), meaning that when that particular symbol is present, the

NU units responsive to it will receive a positive external input (vUi = 1). Each

set of NU units is responsive to one particular input symbol. The sequences

are composed of six different symbols (a, b, c, d, e and f) whose order can be

random or structured. In the structured form, these symbols are organized

in two “words” (a, n × b, c and e, n × d, f), with n determining the word

length.

The network evolves in discrete time steps, according to:

xi(t+ 1) = f(

NE∑
j=1

WEE
ij xj(t)−

NI∑
k=1

WEI
ik yk(t) + vUi − TE

i (t))
�� ��4.1

yi(t+ 1) = f(

NE∑
j=1

W IE
ij xj(t)− T I

i )
�� ��4.2

for the state of the excitatory (Equation 4.1) and inhibitory (Equation 4.2)

units, respectively. f(.) refers to the transfer function (subsection 4.1.2).

An internal state is also defined, based on the network’s activity on the

previous time step (the network’s recurrent drive):

x′i(t+ 1) = f(

NE∑
j=1

WEE
ij xj(t)−

NI∑
k=1

WEI
ik yk(t)− TE

i (t))
�� ��4.3

Most of the analysis will be based on this internal state.

4.1.1 Plasticity

Three plasticity mechanisms operate in parallel to shape the network’s dy-

namics, endowing these networks with self-organizational capabilities. STDP

and SN dynamically regulate the synaptic strengths of the internal weights

(WEE) and IP regulates the excitatory units’ thresholds, so as to spread the
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U(1),   U(2),   ...,   U(t)

Wout

WIE

WEI

 -Readout

Excitatory

Inhibitory

Figure 4.1: Schematic representation of the Self-Organizing RNN[64, 65], with a reservoir
of excitatory units (blue), and a smaller population of inhibitory units (red). The internal
connection weights in the excitatory population (depicted by the arrows, the width of
which represents different strengths) are subjected to STDP and SN. The connections
between the two populations and between the reservoir and the readout are depicted by
the big arrows (indicating full connectivity). Each input population (light blue) receives
external input in the presence of the particular symbol it is responsive to. The excitatory
units’ thresholds vary according to the IP rule.

network activity evenly across all units.

Spike-timing-dependent plasticity (STDP) small, fixed increments /

decrements (adaptation/learning rate: ηSTDP = 0.001) change the

synaptic strengths of pre-existing connections in the excitatory pop-

ulation. This is done in a temporally asymmetric way. When unit i is

active in the time step following activation of unit j, their connection

(WEE
ij ) is strengthened (increased) and when unit i is active in the time
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step preceding the activation of unit j, their connection is weakened

(decreased) by the same amount:

∆WEE
ij (t) = ηSTDP (xi(t)xj(t− 1)− xi(t− 1)xj(t))

�� ��4.4

Synaptic normalization (SN) rescales the WEE matrix on every time

step to prevent STDP from causing uncontrollable growth in the synap-

tic strengths. This rule keeps those synaptic strengths bounded, with-

out destroying the relative distribution of weights:

WEE
ij (t)/

∑
j

WEE
ij (t) = WEE

ij (t)
�� ��4.5

Intrinsic plasticity (IP) distributes the network activity evenly through-

out the neurons, by regulating their responsiveness, i.e., their firing

thresholds, in small, fixed amounts (ηIP = 0.001). On average, each

neuron will tend to fire with HIP firing rate. The threshold of a neuron

that has just been active is decreased, while the threshold of an inactive

unit is increased by the same amount:

TE
i (t+ 1) = TE

i (t) + ηIP (xi(t)−HIP )
�� ��4.6

The implementation of the described model and all the simulations are

performed in Matlab (appendices B and C).

4.1.2 Transfer Functions

Network behavior also depends on the neuron’s input-output function

(transfer function). Throughout this thesis, 2 different transfer functions

will be used (Figure 4.2):

Heaviside step function This function acts as a mathematical ‘on/off’

switch. The output is set at one of two levels, depending on whether

the total input is greater than or less than some threshold value (or
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zero):

Θ(x) =

0 if x ≤ 0

1 if x > 0

Piecewise linear function (clipped linear) This function is defined in 3

‘pieces’, with a linear portion in [0, 1/m], where the output activity is

proportional to the input. m controls the slope of the linear portion:

ϕ(x) =


0 if x ≤ 0

mx if 0 < x < 1/m

1 if x > 1/m

0

0

1

Input

O
u
tp
u
t

0 1/m

0

1

Input

Figure 4.2: Graphical representation of the transfer functions used. The depicted clipped
linear has a slope (m) of 1.

The clipped linear is a softened version of the hard limiter (step function),

where the transition to clipping is not so abrupt. True hard limits are seldom

seen in biological neuron’s behavior, where there are always graded transition

regions [41].

4.2 Analysis Methods

To determine the dynamic characteristics of these kind of reservoirs (subsec-

tion 3.3.2) two main properties ought to be assessed [71, 73]:
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Separation property – different inputs result in clearly separable state-

space trajectories, i.e., the distance between different network states is

caused by different inputs.

Approximation property – the readout is capable of producing a desired

output based only on the internal network states.

Other desirable features to be assessed are the existence of small pairwise

correlations of the reservoir activations and a subcritical network behavior.

4.2.1 Separation Property

To correctly ascertain whether the differences in the network’s internal

states are caused by different inputs, we perform agglomerative hierarchical

clustering and principal component analysis (Appendix A) on the internal

network activations (x′(t)), for a given training period.

For the clustering procedure, the network’s excitatory activity pattern

at each time step is considered a point in NE - dimensional space. Each

of these points is then considered the center of its own cluster and the Eu-

clidean distance between these centers is computed. The resulting clusters

are hierarchically merged, until only the last n + 2 (“word” length) clusters

remain.

The PCA procedure is used to visualize the network’s state representa-

tions in the presence of the different input conditions, projected along the

axis of the first PCs.

4.2.2 Approximation Property

To determine the readout “quality”, a normalized performance measure

is used. Given the nature of the input sequences, this measure will determine

the capacity of the readout to correctly predict the immediately subsequent

input in the sequence, based only on the network’s internal state (one-step

prediction performance).

For that purpose, a time series of activations is collected (X ∈ RNE×T )

over a training period (1, . . . , T ) and used, together with the target output
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(Ytarget ∈ RNy×T ) to find the readout weights (Wout). Finding the appropriate

weights is solving a system of linear equations:

WoutX = PX(Ytarget)

where PX is the orthogonal projection onto the space spanned by the columns

of X.

To do so, we use the Moore-Penrose pseudo-inverse method to find the

least square estimate, i.e., to minimize the squared difference between the

readout output and the target output. This is the only supervised training

procedure employed:

Wout = YtargetX
†

The trained Wout are then used to assess the readout performance on

a second time series, where the readout output depends exclusively on the

internal network states. The absolute difference between target and readout

output is then normalized to provide a measure of performance.

4.2.3 Criticality

Criticality will be assessed through a perturbation analysis. For every

state x(t), an external perturbation is introduced to a randomly chosen exci-

tatory neuron (altering its state from active to inactive, or vice-versa). This

perturbation creates an altered state x̃(t), with a Hamming Distance (Ap-

pendix A) of 1 from the normal state (d(t) = 1). Both perturbed and normal

states evolve according to Equation 4.1, in order to determine how the net-

work handles the perturbation (by calculating the distance at time t+1). The

procedure is repeated throughout the entire series and the average distance is

determined (d̄(t+1)). If d̄(t+1) > 1 the network amplifies the perturbations

and is said to operate at a supercritical regime; if d̄(t + 1) < 1 the network

displays self-correcting behavior, operating at a subcritical dynamic regime

(the desirable one); if d̄(t+ 1) ' 1 (Figure 4.3 (red line)), the network oper-

ates at a critical regime. It has been argued that reservoirs achieve optimal

computational performance in this critical regime, operating at the edge of
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chaos [11, 88].

x(t)

x(t+1)

x(t)~

d(t)=1

Figure 4.3: Schematic representation of the perturbation analysis. In the time step
following the perturbation, the network can either amplify or smother it. This constitutes
a measure of criticality of network’s dynamics.
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5
Results

A man of science is responsible for the accuracy of his observa-

tions and of his inferences, not for the results which may follow

therefrom.

– Arthur Keith

5.1 Initial Parameters

In the following experiments, we tweak some of the initial variables that are

prone to have a significant impact on the network’s dynamics and predic-

tion performance. For that purpose, we consider the network architecture

presented in section 4.1, with binary logic gates (Heaviside step transfer

function): x(t) ∈ {0, 1}NE
and y(t) ∈ {0, 1}NI

. We assess several parameter

settings for both dynamic and static reservoirs, in the presence of structured

inputs with n = 8. Dynamic reservoirs are shaped by plasticity for 50.000

time steps, after which plasticity is turned off and the analysis will then be

based on the final, post-plasticity values of TE and WEE. The first 5.000

steps of the analysis phase are discarded (as they may be contaminated by ini-

tial transients) and the analysis is performed on the subsequent 5.000 steps.

For both dynamic and static reservoirs, the choice of initial parameters is

directed at achieving the best performance. The results of this study will

lead to the choice of the optimal initial conditions that will be used in the

following simulation studies.

41



5.1. INITIAL PARAMETERS

5.1.1 Initial Threshold Values

The presence or absence of a spike for each time step is dependent upon

the comparison of the total drive the neuron receives with its threshold.

As previously mentioned (section 4.1), the initial threshold values for both

inhibitory and excitatory neurons are drawn from a uniform distribution in

[0, T I
max] and [0, TE

max], respectively. So, the choice of TE
max and T I

max has

a great impact on the neuron’s responsiveness and needs to be carefully

assessed. In this section, we consider the impact of 32 different combinations

of TE
max and T I

max on:

Performance – one-step prediction performance

Firing Rate – mean number of firing neurons per time step

All the results depict the averages and standard deviations over 10 simula-

tions per condition for networks with 100 (Figure 5.1) or 200 (Figure 5.2)

excitatory neurons.

Several combinations of TE
max and T I

max are acceptable. In both cases, the

choice will have performance as the dominant factor. It is noticeable that

dynamic reservoirs appear to outperform static ones in every setting and they

all present firing rates within the target range.

In the case of static reservoir, we choose TE
max = 0.75 and T I

max = 0.8, it

is the best performing configuration for NE = 100 and among the best for

NE = 200. Also, with these values, the firing rates are, on average, close to

the target rate of 0.1.

For the dynamic reservoirs, we choose TE
max = 0.5 and T I

max = 1.4. In

this case several other combinations achieve high performances, so any one

of those combinations would be acceptable.

5.1.2 Sparsity of the WEE matrix

In the construction of the reservoirs, the internal connectivity among

excitatory neurons is sparse. A mean absolute value (λW ) is defined as an

in/out-degree, i.e., each neuron receives, on average, λW connections from all
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Figure 5.1: Impact of different initial threshold values on network’s performance and
firing rates. The results depict the means and standard deviations obtained over 10 sim-
ulations, for networks with NE = 100.

other neurons in the reservoir and establishes, on average, λW connections

with other neurons. In this section we investigate the impact of different

sparsity indices on network’s performance (Figure 5.3A). This is an important

parameter, given that sparsity is retained throughout plasticity, i.e., no new

connections are allowed to be established. So, this parameter determines the

general connectivity in the reservoir. It’s important to point out that this

index ought to have different impacts on networks of different sizes. Networks

with 200 neurons with λW = 10 establish 5% of all possible connections,

whereas in networks with 800 neurons this same index corresponds to a 1, 25%

connectivity.
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Figure 5.2: Impact of different initial threshold values on network’s performance and
firing rates. The results depict the means and standard deviations obtained over 10 sim-
ulations, for networks with NE = 200.

5.1.3 Target Firing Rate

In dynamic reservoirs, the IP rule spreads the activity evenly across the

neurons, constrained by a target firing rate (see section 4.1). This rate is

defined as the mean proportion of firing neurons per time step. The results

(Figure 5.3B) indicate that dynamic reservoirs obtain the highest perfor-

mance for a rate of 20 − 25 firing units per time step. For a rate of 25, the

performance results are more consistent, with smaller standard deviations

over the 10 simulations. However, the greatest absolute performances of all

settings are achieved for 20 firing units per time step, where 3 of the 10

simulations obtained a performance greater than 0.92.

Given that the considered networks were made up of 200 neurons, 10

of which are input neurons, a firing rate of 20 corresponds to 2 × NU/NE.
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Obviously, setting the firing rate to this value will have a different impact on

networks of different sizes.
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Figure 5.3: Impact of WEE sparsity (A) and target firing rate (B) on network’s perfor-
mance. For dynamic reservoirs λW = 10 clearly achieves the highest performances. Static
reservoirs perform best with sparser connectivity indices. A target firing rate of 20 − 25
firing units per time step achieves the highest performances. Depicted are the means and
standard deviations over 10 simulations per condition, for networks with NE = 200.

5.2 Changes Introduced by Plasticity

During the learning stage in dynamic reservoirs, the combination of the 3

plasticity mechanisms shapes the network’s parameters to better represent

and separate the input. The reservoir’s internal connectivity matrix (WEE),

initially distributed over small values (most of them between 0 and 0, 3 (Fig-

ure 5.4)), becomes selectively strengthened by STDP, with a few synapses

reaching values above 0, 9, although the majority becomes saturated around

small values. This indicates a certain degree of specialization, with some

connections being preferably selected over the others (as intended).

As explicitly enforced by the model, SN constrains the weight values to

[0, 1], thus inhibiting the changes introduced by STDP from having a dele-

terious effect on the network’s connectivity by causing uncontrolled growth

or decay in weight values. When SN is not present, the network shows

synchronous, periodic activity bursts with almost every unit firing simulta-

neously (Figure 5.7 B and E). In between these bursts, most neurons are
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Figure 5.4: Variation in the internal connection weights matrix (WEE) before (left) and
after (right) 50.000 steps of plasticity. For the purpose of good visualization, we used an
example network composed of 100 neurons. The top row depicts the weights matrices as
surface plots, the bottom row includes weight distribution histograms.

silent.

The introduction of IP effectively spreads the spiking activity evenly

across the network by readjusting the unit’s thresholds in every iteration.

When IP is not present, the distribution of neural firing rates becomes spread

over a larger interval (Figures 5.5, 2.5).

Another relevant measure, pertaining to the internal connection weights,

is the spectral radius (ρ), i.e., the largest absolute eigenvalue. This is an im-

portant parameter in the context of ESNs [54, 71]. For the ESN principle to

work, the reservoir must have the echo states property1. This property is as-

sured only if the reservoir’s internal weights matrix satisfies certain algebraic

conditions (see [54], for the full mathematical demonstration). One such con-

1The effect of a previous state and a previous input on a future state vanishes gradually
as time passes[71].
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Figure 5.5: Variation in the excitatory unit’s threshold values for an example network
with 200 neurons, during 50.000 steps of plasticity. The red line indicates the mean.
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all neurons firing with the desired target rate (A). This homeostatic distribution of activity
allows the network to develop a “healthier” dynamics, without excessive activity.
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Figure 5.7: Effects introduced by the different plasticity mechanisms in the reservoir’s
activity. A, B, C and G show the distribution of spiking activity per time step throughout
65, 000 steps (50, 000 of which have plasticity active) for different combinations of mecha-
nisms. D, E, F and H display the corresponding activity patterns for 50 randomly chosen
reservoir units, during the first 30, 000 plasticity steps. H corresponds to the activity in
the presence of STDP alone. The networks in these experiments were presented with an
unstructured (random) input sequence. The combination of all 3 mechanisms is clearly
beneficial in maintaining desirable activity levels (A, D).
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dition (necessary, but not sufficient) is ρ < 1. Usually, in the construction of

ESNs, the internal weights matrix is scaled to assure that ρ < 1.

The optimal value of ρ depends on the amount of memory required by

a given task. It has been experimentally demonstrated that ESNs perform

better for higher values of ρ (around 0.8) [128].

In our case, no caution was taken with this parameter in the construc-

tion of the reservoir. Nonetheless, both static and dynamic reservoirs have

ρ < 1 (Figure 5.8). However, plasticity seems to distribute the eigenvalue

spectra more widely, which can signify an adjustment to the task’s memory

requirements.
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Figure 5.8: Eigenvalue spectra for 10 simulations of static (A) and plastic (B) reservoirs.
Static reservoirs display a much more contractive spectral radius.

5.2.1 Learning Interval

The results discussed so far in this section, were based on the changes

in network’s parameters introduced by having plasticity mechanisms active

for 50.000 time steps. But the size of this learning phase, i.e., the number

of time steps in which plasticity is active, needs to be accounted for as it is

bound to have an impact.

As the results demonstrate (Figure 5.9), longer learning phases contribute
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to better performances and to stabilize network’s dynamics (measured here

as the network’s response to external perturbations (see subsection 4.2.3)).

The impact on these parameters is more significant for durations of up to

80.000. Learning phases longer than that, display smaller variations.

The impact on average firing rates is not as noticeable, with all settings

displaying some variation between 0.06 and 0.1, but rarely actually achieving

the target rate.

Setting the number of learning steps to 50.000 appears to be a good

choice, allowing these networks to settle into a subcritical dynamic regime

and achieve good prediction performances.
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Figure 5.9: Impact of the duration of the learning phase in dynamic reservoirs shaped by
all 3 plasticity mechanisms in performance, mean firing rates and criticality. The results
depict the means and standard deviations obtained from 10 simulations of networks with
200 neurons.
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5.3 Changing transfer function

Modifying the neuron’s transfer function will significantly impact network

behavior. In this section, we simulate example networks with NE = 200

in the presence of a structured input (n = 8), using the two transfer func-

tions described in subsection 4.1.2. The clipped linear function used in these

simulations has its slope set to 1 (see performance results below (subsec-

tion 5.4.2)). In both cases, the networks have their initial parameters set

according to the results in section 5.1.

Note that the activation state of neurons with a clipped linear transfer

function is real-valued, varying in the interval [0, 1] and not binary, so these

neurons cannot be seen as spiking neurons, hence the notation in the his-

tograms (Figures 5.10 and 5.11). However, the plotted values (activity per

time step and normalized activity) are calculated in the same manner as

spikes per time step and firing rate, respectively.
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Figure 5.10: Comparison between network activity in 2 dynamic reservoirs with different
transfer functions. The first row depicts a snapshot of the activity of 50 randomly chosen
neurons. The bottom row contains activity distribution histograms.

Despite their differences, both types of dynamic reservoirs develop into

similar activity patterns (given the constraints enforced by plasticity)(Figure 5.10).

The bigger differences are in the static reservoir case. Without plasticity
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Figure 5.11: Comparison between network activity in 2 static reservoirs with different
transfer functions. The first row depicts a snapshot of the activity of 50 randomly chosen
neurons. The bottom row contains activity distribution histograms.

shaping network’s parameters, the clipped linear network shows very low

activity, with most neurons silent throughout simulation (Figure 5.11).

Another interesting difference between the results obtained for reservoirs

with the two transfer functions lies in the modifications enforced by the

IP rule in the unit’s thresholds. The other plasticity mechanisms operate

similarly for both, but IP, in the clipped linear case, lowers the thresholds of

most units to 0, or even to negative values in some cases, while raising a few

unit’s thresholds to values close to 1 (Figure 5.12).

The threshold determines whether the pre-activation state of each neuron

is positive or negative (Equation 4.1). In ‘binary’ neurons, this is translated

into firing (1) or not (0), whereas in the clipped linear case, it determines

whether the neuron’s output is 0, or 6= 0 (in which case, the output is a

value in [0, 1]). Hence the differences in the observed variation in threshold

values. In both cases, the objective is to obtain an average neuronal activity

of 0.1, but the variation in threshold values leading to the completion of this

objective varies depending on the transfer function that determines the value

of each variable at each time step.
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Figure 5.12: Variations in the unit’s thresholds introduced by plasticity. Initially dis-
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5.4 Prediction Performance

In this section we assess prediction performances, i.e., the ability of a trained

readout to correctly predict the next input in the sequence, using only the

network’s internal states (see subsection 4.2.2).

To do so, the network activity patterns must reflect the temporal struc-

ture of its input sequence. As described in section 4.1, the structured input

sequences are composed of random alternations of two “words” with n+2 let-

ters each (a, n×b, c and e, n×d, f). In order to allow the readout mechanism

to predict the next symbol in the sequence, network activity must reflect how

many repetitions of b or d it has been presented with, i.e., identical inputs (b

and d) have to be mapped onto distinct internal representations, based only

on temporal context (recent input history).

The word length (n) can be seen as a measure of task difficulty. The

longer the symbol sequence, the harder it is for the network to retain this

information in memory. Also, because the order of the words is randomized,

the prediction of the first letter of each word in the sequence is random. These

effects become apparent if we plot the prediction errors (Figure 5.13). For

small values of n, the only significant errors occur in the first letters of each

word and in the first repetition of b or d (in dynamic reservoirs). Increasing

task difficulty, also increases the error, particularly in the last symbols of

the sequences, because it becomes harder for the network to retain the full

sequence information. Memory for how many repetitions were presented

fades gradually, leading to the steady increases in prediction errors.

For the largest word lengths (last row in the figure), the differences be-

tween dynamic and static reservoirs fade (similar errors occur) and it becomes

difficult to discern the two results.

5.4.1 Network size

Mathematical studies demonstrate that a robust separation of trajecto-

ries is directly related to the dimensionality of the state space [18]. The

higher the dimensionality of the state space, the easier the linear separation
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Figure 5.13: Root mean squared error for each input symbol in the sequences, obtained
from 10 simulations of networks with NE = 800 and word lengths of 4 (A, B), 12 (C, D)
and 20 (E, F). These networks have a memory of input history that fades with the increase
in sequence length, leading to ever greater prediction errors. The presence of plasticity
leads to more accurate predictions.

of trajectories becomes.

Given that in the current model, the state space is NE − dimensional

(because each neuron in the reservoir is described by a single state variable),

increasing NE leads to a better separation of the trajectories of active states

created in response to the input sequences, making it easier for the readout

mechanism to discern the different symbols in the sequence (Figure 5.14).

Regardless of being dynamic or static, all reservoirs achieve increasing per-

formance results with increasing NE.
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Dynamic reservoirs display a clear performance advantage, that is con-

sistent across the different network sizes. This difference does, however,

diminish in the larger networks.
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Figure 5.14: Impact of network size on performance. Depicted are the mean perfor-
mances obtained from 100 simulations of networks with NE = 100 and 200, and 10
simulations of networks with NE = 400, 800 and 1600 in a task with n = 8. For the same
task difficulty, larger networks always outperform smaller ones.

Increasing the dimensionality of the state space also has an impact on the

network’s memory capacity (Figure 5.15). In the smallest networks (NE =

100), the peak performance corresponds to the shortest word length, de-

creasing from then on. Increasing network size, augments the memory span,

with the best performances of dynamic reservoirs being achieved at longer

sequence lengths. In the higher-dimensional case analyzed (NE = 800), the

top performance is achieved at n = 14, and only begins to decline from that

point on. So, the ability to retain information about sequence history for

long sequences correlates with the dimensionality of the state space to which

those sequences are projected.

5.4.2 Transfer Function

All the performance results thus far discussed have been acquired using

networks of ‘binary’ neurons (Heaviside transfer function). Now we analyze
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Figure 5.15: Mean performances (and standard deviations) obtained from 100 simula-
tions of networks with NE = 100 (A) and NE = 200 (B) and 10 simulations of networks
with NE = 400 (C) and NE = 800 (D).

the impact of changing the neuron’s transfer function to clipped linear. We

start the analysis by assessing the impact of the function’s slope in prediction

performance. For that purpose, we simulate 10 networks with NE = 200 in

the presence of a structured input with n = 8.

As the slope increases, the transformation that occurs in each neuron

will approximate a step function (Figure 5.16). The results obtained never

significantly deviate from those of the step function. There are, however

two interesting results. With a slope of 1, dynamic reservoirs achieve a

performance above average (0.9), and this result is very consistent. In fact,

there is no standard deviations, all 10 simulations achieved a performance of

exactly 0.90. In the case of static reservoirs, a similar phenomenon occurs at

a slope of 5, although in this case there is some variation among simulations.
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Figure 5.16: Changing the slope of the clipped linear transfer function, to approximate
the step function (red).
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Figure 5.17: Prediction performance in networks of linear neurons (clipped linear transfer
function) obtained from 10 simulations per condition for dynamic (A) and static (B)
networks with 200 neurons, in a task with n = 8. As the slope increases (approximating
the step function), performance results also get closer to the results obtained for the
equivalent networks with ‘binary’ neurons (shaded area).

With the clipped linear as the neuron’s transfer function, the network’s

active states are likely to contain more information about the input that

caused them as well as the sequence history. Given the results presented in

Figure 5.17 and section 5.3, we decided to further assess the performance and

memory capacity of these networks with the slope of the transfer function

set to 1 in dynamic reservoirs and 5 in static reservoirs.
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Figure 5.18: Prediction performance (means and standard deviations) obtained from 10
simulations per condition for networks with NE = 200 and clipped linear as the neuron’s
transfer function. Dynamic reservoirs achieve very high performances, and performance
only starts to decline for word lengths 26.

The results show an unequivocal advantage of dynamic reservoirs with

linear neurons over even the best performing networks of binary neurons, in

both performance and memory capacity (Figures 5.18 and 5.19). Shaped by

plasticity, these networks achieve amazing performance results, maintaining

a consistent peak performance above 0.95 for sequence lengths of up to 26.

Prediction performance only begins to decline for n ≥ 30.

This is not the case for the static reservoirs, that are only capable of

outperforming the corresponding ‘binary’ networks for the smaller sequence

lengths (up to 12), and whose performance rapidly declines.
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Figure 5.19: Mean squared error associated with each symbol in the sequence, in dynamic
reservoirs with ‘linear’ neurons and NE = 200, for word lengths of 4(A), 12(B), 20(C)
and 30(D). Readout predictions are extremely accurate even for larger sequences, when
compared to the best performing dynamic reservoirs with ‘binary’ neurons (Figure 5.13).
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5.5 Internal Representations

To assess whether the networks acquire the input structure, i.e., whether

different input conditions are reflected in spatially separable trajectories, we

performed agglomerative clustering and PCA on the internal network states

(x′), according to the description in subsection 4.2.1. For the clustering algo-

rithm, 10.000 steps of network activity (networks with NE = 200 and initial

parameters set according to section 5.1) were considered (after 50.000 steps

of plasticity, in the case of dynamic reservoirs). The clustering stops when

the last 20 clusters are determined, corresponding to the 20 input symbols

(given that in these experiments n = 8). The objective of this analysis is to

assess how the network’s state-space trajectories reflect the input structure.

We analyze static and dynamic reservoirs of ‘binary’ neurons, as well as a

dynamic reservoir of ‘linear’ neurons.

A result that is common to all reservoir types analyzed is the overlap be-

tween the representations of the first symbols of each sequence (a and e). As

explained in the previous section, the two sequences are randomly ordered,

so these symbols are equally likely to appear. Network activity reflects that

fact, the trajectories of active states generated in response to these symbols

are similar and the network cannot discern between the two. Despite being

grouped together in the same activity clusters, these representations do not

settle into a single cluster. They are distributed throughout 4 different clus-

ters, in static reservoirs (Figure 5.20)) and in 2 different clusters, in both

dynamic reservoirs (Figures 5.21 and 5.22).

The active states generated in static reservoirs are distributed in fewer

clusters than their dynamic counterparts, with several input symbols gener-

ating similar activity patterns (as many as 9 input symbols are grouped in

the same cluster). Nonetheless, this distribution is not random and clearly

reflects the input structure, with each ‘word’ being almost totally grouped

in single clusters (Figure 5.20). Cluster 2 contains the state representations

of d1 to f (almost the entire second word) and cluster 9 contains the state

representations of b3 to c (almost the entre first word). Given the spatial

proximity between the activity vectors generated in response to each indi-

61



5.5. INTERNAL REPRESENTATIONS

vidual symbol, discerning between them is harder than in the case of dynamic

reservoirs, thus explaining the difference in readout prediction performance.
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Figure 5.20: Results of cluster analysis in static reservoirs. 2 of the clusters contain
several input conditions, corresponding to some of the repetitions of b or d. The network
is, however, capable of discerning between the 2 different sequences (words). Network
activity in response to 14 of the 20 input symbols converges to a single cluster. The
remaining 6 symbols create trajectories that are spread into 2, 3 or 4 activity patterns.

Plasticity fundamentally changes network behavior and, consequently, the

state representations of the input conditions. Dynamic reservoirs are better

capable of mapping individual input symbols to discernible activity patterns

(Figure 5.21). Several symbols generate distinct, unique network responses

(b3, d3, d5, d6, d7, d8 and f); other symbols generate patterns that, although

discernible, can be grouped in 2 different clusters (d1, d4, b1 and b2), while

the remaining representations overlap in the same cluster. Activity cluster 4

contains the state representations of the last 6 symbols of the first sequence

(b4 to c). Interestingly, clumped in this same cluster are also representations

of symbols a and e.

Dynamic reservoirs display different characteristics and, apparently dif-

ferent ‘methods’ of representing the input, depending on the neurons’ transfer
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5.5. INTERNAL REPRESENTATIONS
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Figure 5.21: Results of the cluster analysis in dynamic reservoirs. Cluster 4 contains
almost all repetitions of b, but a and e are also placed in that same cluster. Most symbols’
representations fall within discernible activity patterns (single cluster), particularly the
symbols of the second ‘word’. 8 of the 20 symbols are projected to 2 different activity
clusters.

function used. Whereas in the previous cases analyzed, the state representa-

tions appear to be grouped according to sequence (the word to which each

symbol belongs), in the case of clipped linear neurons, the network appears

to code for temporal order, i.e., the state representations of the symbols are

grouped, not according to the word they belong to, but according to their

position within the word (Figure 5.22). Cluster 2 contains the representa-

tions of b6 and d6, cluster 10 contains the representations of b5 and d5 and

cluster 1 contains the representations of the final portions of both words (b7,

b8, c, d7, d8 and f). This is an interesting result and it may underly the

outstanding performance results obtained with these networks. Although the

symbol representations are not entirely separated, this method of grouping

network activity may facilitate linear separation and increase the memory

span.

The only symbol that generates a distinct and unique representation is
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5.5. INTERNAL REPRESENTATIONS

d3 (cluster 5). b3, b4, d4, d2 and b1 generate representations that fall into 2

different cluster, but in close spatial proximity, it is likely that, if we analyzed

longer time series of activations, the network would ‘settle’ into a single state

representation for each of those symbols. The only ‘confusion’ is in the

representations of the first and second repetitions of b and in a and e (for the

reasons previously outlined).
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Figure 5.22: Results of the cluster analysis in dynamic reservoirs made up of ‘linear’
neurons. Cluster 4 contains almost all repetitions of b, but a and e are also placed in
that same cluster. Most symbols’ representations fall within discernible activity patterns
(single cluster), particularly the symbols of the second ‘word’. 8 of the 20 symbols are
projected to 2 different activity clusters.

In any case, sequence history is clearly reflected in network activity, either

accounting for which of the 2 sequences is present, or which position each

symbol occupies in the sequence.

The results of PCA, performed on 50.000 steps of network activity, can

complement the previous observations. By scattering the state representa-

tions of each input symbol along the projection space of the first principal

components, the differences between static and dynamic reservoirs become

clearer. In static reservoirs there is a significant overlap between these dif-
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5.5. INTERNAL REPRESENTATIONS

ferent network states (Figure 5.23). Each input symbol produces a cloud of

network states depicting the existence of several distinct internal representa-

tions that are not, in most cases, well separated from the other symbols in

the sequence. In accordance with the results of the cluster analysis, the rep-

resentations of the two symbol sequences projected in PCA space are distinct

(albeit overlapping).
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Figure 5.23: Results of PCA performed on static reservoirs. Top row: Projection space
of the first 3 principal components. There is a substantial overlap between the network
states created in response to each input symbol, when projected to the PCA space. The
representations of the two symbol sequences are distinct from each other. Bottom row:
amount of variance explained by the first few PCs.

Dynamic reservoirs, on the other hand, learn stabler representations of

the individual input symbols, although no individual symbol representation

forms a single cluster in PCA space (Figure 5.25). Particularly well sepa-

rated are the last symbols of each sequence, b8, d8, c and f , whose state

representations are scattered further away from the remaining symbols’ rep-

resentations.

There is, in both symbol sequences, a tighter ‘central’ cluster of active
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5.5. INTERNAL REPRESENTATIONS

states, corresponding to the first few symbols (particularly a, b1 and e, d1).

This result is consistent with the greater readout prediction errors for these

first symbols (Figure 5.13).
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Figure 5.24: Results of PCA performed on dynamic reservoirs. Top row: Projection
space of the first 3 principal components. The majority of the input symbols creates
discernible and well separated network states. There is a significant overlap in ‘central’
cluster, but some symbols’ representations are distributed further from it, facilitating
linear separation. Bottom row: amount of variance explained by the first few PCs. The
first 10 PCs account for over 70% of the variance in the data.

As previously highlighted in the results of the cluster analysis, dynamic

reservoirs whose neurons’ transfer function is the clipped linear, develop

timing-based representations, effectively ‘counting’ the symbol positions within

the words. This effect is even clearer when the state representations are pro-

jected onto the space spanned by the first 3 PCs. The two symbol sequences

are indistinguishable from each other, but the symbols’ positions are repre-

sented by similar active states in both words (identical state space trajecto-

ries). The distinct representations of each individual symbol are also closely

clustered, allowing a much better linear separation. As in the previous cases,
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5.5. INTERNAL REPRESENTATIONS

the greatest overlap exists in the representations of the first symbols (a, b1

and e, d1). Also, the organization of network states is more ordered, as sug-

gested by the amount of variance explained by the first PCs. The first 8

PCs account for almost 100% of the variation in the data. In fact, just the

first 3 PCs encompass as much of the sample variance as the first 10 in the

reservoirs of the ‘binary’ type.
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Figure 5.25: Results of PCA performed on dynamic reservoirs made up of ‘linear’ neu-
rons. Top row: Projection space of the first 3 principal components. Input symbols create
well separated network states, some overlap is present mainly in the states corresponding
to the symbols a, b1, e and d1. Bottom row: amount of variance explained by the first
few PCs. The first 8 PCs capture almost 100% of the variance.

67



6
Discussion

The most exciting phrase to hear in science, the one that heralds

new discoveries, is not ’Eureka!’ (I found it!) but ‘That’s funny’

– Isaac Asimov

Understanding information processing in the neocortical circuitry and the

laws that govern it constitutes a tremendous task. Ubiquitous variability and

complexity hinder the analysis, but the essence of the brain’s mechanisms can

be accounted for with the help of simplified model systems.

New theoretical frameworks are emerging that can explain the general-

ized ability of neural circuits to process, classify and discriminate stimuli in

real time. This ability is the result of an interaction between the external

stimulus and the network’s internal state. It is this state dependency that

allows neural networks to encode time and spatiotemporal structure (in the

form of evolving state-space trajectories). This implies that network activity

patterns at any given time, reflect, not only the current input, but a nonlinear

combination of recent stimulus history (a fading memory).

According to this general framework, downstream ‘read-out’ neurons can

learn to decode the trajectories by appropriately adjusting the synaptic con-

nections they receive from the circuit’s neurons. Different trajectories of
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active states encode different features of the stimulus structure.

An extremely relevant issue that needs to be accounted for is the fact

that the internal state of a cortical circuit is dynamically shaped by a host

of plasticity mechanisms, subserving particular functions, and operating at

different spatial (from the individual synapse to the entire network) and

temporal scales (from hundreds of milliseconds to several days or longer).

These mechanisms shape the state-space trajectories, optimizing the brain’s

computational efficiency. Although diverse, the set of plasticity mechanisms

is finite and great progress has been made in identifying them and deciphering

how they operate. A lot is known about how these mechanisms operate

individually, but understanding their interaction has only recently come into

focus.

Throughout this thesis, we have analyzed the properties of simple reser-

voir networks, built according to the general principles of reservoir computing

(state-dependent models), while they evolved through the combined effect of

three plasticity mechanisms (STDP, SN and IP) in response to external input

sequences designed to test the reservoir’s memory capacity and the depen-

dence of the internal representations on temporal context.

Plasticity was shown to be clearly advantageous in improving the net-

work’s capacity to separate state-space trajectories generated in response to

the individual symbols, thus improving the readout prediction performances,

and in stabilizing network activity towards a ‘healthy’ firing regime, suitable

for the development of relatively stable internal representations. This advan-

tage, however, was only maintained if all three mechanisms were present.

The synaptic modifications produced by STDP require homeostatic reg-

ulation (provided by SN), otherwise the network develops excessive spiking

activity, with some neurons firing at every time step (if STDP is the only

mechanism present) or with synchronous activity bursts (if IP is also present).

The intrinsic plasticity rule was shown to be of particular importance, be-

cause of its stabilizing effects, achieved by spreading the network activity

evenly throughout the neurons (by modifying individual neurons’ threshold

values). So, only in combination do these mechanisms allow the network

to stabilize its activity, settling into a regime suitable for acquiring stable
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internal representations of the input.

By projecting the symbol sequence information to a higher dimensional

state-space, larger networks are better able to separate the trajectories, as

well as retain information about longer sequences. So, as excepted, perfor-

mance and memory capacity are directly related to network size, in both

static and dynamic reservoirs.

Interesting results were obtained by changing the neurons’ transfer func-

tions. The clipped linear function allowed the neuron’s to develop a smoother

input-output transition, increasing the overall network capacity to reflect the

temporal properties of the input sequences in its state dynamics. The pres-

ence of plasticity was shown to be even more relevant for this case. In fact,

without plasticity, reservoirs of the clipped linear type, displayed negligible

performance improvements, whereas when plasticity was present these net-

work’s separation properties and memory capacity were far better than their

‘binary’ counterparts.

Dynamic reservoirs of clipped linear neurons were shown to separate the

symbols based only on the timing of their appearance in the sequence, i.e.,

their position within each word, which is a significantly distinct result, given

that the other reservoirs mostly separated the input symbols based on which

of the two sequences they belonged to.

Overall, the more relevant result was the fact that all dynamic reservoirs

analyzed were capable of generating distinct activity patterns in response to

similar input symbols (the repetitions of b and d), based only on temporal

context. Without plasticity shaping its properties, static reservoirs displayed

a smaller capacity to do so, with the majority of the symbol repetitions being

lumped into the same activity patterns. So, the combination of several plas-

ticity mechanisms is clearly beneficial in shaping neural network’s response

characteristics and allowing them to naturally process temporal structure.
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A
Methods Description

Agglomerative Hierarchical Clustering

Hierarchical clustering is a family of methods that is used to build a

cluster hierarchy. There is a concept of ordering involved. The algorithms

find successive clusters, using previously established ones. The order is driven

by how many observations can be combined at any given point, and how the

significant distance is determined.

These algorithms are usually either agglomerative or divisive. Agglom-

erative algorithms begin by considering each element as a separate cluster

and merging them into successively large clusters by evaluating the pairwise

distances between clusters, according to some similarity criteria, until all the

data is agglomerated in one cluster in a “bottom-up” approach. Divisive al-

gorithms work the other way around, considering all observations as a single

cluster and splitting them recursively in a “top-down” manner, until only

clusters of individual objects remain.

The most important step in cluster analysis is the selection of an ap-

propriate metric, which will determine the clusters’ elements similarity or

dissimilarity and how they are going to be combined or split, thus influenc-

ing the shape of the clusters. Because no provision is made for relocating

“misplaced” objects in these methods, a correct choice of metric is funda-

mental and the results should always be closely examined to ensure they

make sense.
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Figure A.1: Example of data clustering (left) and the most common way of representing
it (dendrogram) (right).

The most commonly used distance metrics are:

The Euclidean distance is the most broadly used measure. Also called

the two-norm distance, it has its origins on the Pythagorean Theorem.

If p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) are two points in Euclidean

n-space, the distance between them is

d(p, q) = ||p− q||2
√

(q1 − p1)2 + (q2 − p2)2 + ...+ (qn − pn)2

The Manhattan distance also known as the rectilinear distance, one-norm

distance or city-block distance. If p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn)

are two vectors in n-dimensional real vector space, the distance between

them is the sum of the lengths of the projections of the line segment

between the points onto the coordinate axes

d(p, q) = ||p− q||1 =
n∑

i=1

(pi − qi)

The Mahalanobis distance also called the quadratic distance. It mea-

sures the separation between two groups of objects and it is mainly

used in classification problems, where there are several groups (multi-

variate analysis) and the investigation concerns the affinities between
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Figure A.2: Schematic representation of the Euclidean and Manhattan distances in
two-dimensional space.

them. It is better adapted than the Euclidian distance to settings in-

volving non spherically symmetric distributions. If p = (p1, p2, ..., pn)

and q = (q1, q2, ..., qn) are two points in n-dimensional space and C, the

covariance between them,

d2
M(p, q) = (p− q)TC−1(p− q)

The Chebychev distance or maximum metric, determines the distance

between two vectors, or points, as the maximum distance along any

coordinate dimension. It is induced by the supremum norm or uniform

norm. If p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) are two points in

n-dimensional space

dChebychev(p, q) = maxi(|pi − qi|) = lim
k→∞

(
n∑

i=1

|pi − qi|k)1/k

The Hamming distance is mostly used for non-numeric data. It measures

the minimum number of substitutions required to change one string

into another, i. e., the number of positions at which the corresponding

symbols are different. It was introduced in information theory as an

error detection/correction code[42].

d(p, q) = (](qi 6= pi)), ∀i ∈ [1, n]

73



The main distance criteria embedded in most clustering algorithms are:

Single linkage also known as nearest neighbor approach, it considers the

distance between any two clusters as the shortest distance from any

point in one cluster to any point in the other. Two clusters are merged

based on the single shortest or strongest link between them. If A and

B are two clusters:

min(d(x, y) : x ∈ A, y ∈ B)

Complete linkage similar to single linkage, but based on a furthest neigh-

bor approach, considering the maximum distance between clusters.

The maximum distance between any two individual observations is rep-

resented as the smallest sphere that can enclose them:

max(d(x, y) : x ∈ A, y ∈ B)

Average linkage determines the mean distance between the elements in

each cluster:
1

|A|.|B|
∑
x∈A

∑
y∈B

d(x, y)

Centroid linkage this criterion is based on measuring the Euclidean dis-

tance between the centroids of two clusters:

d(x, y) = ||x̄i − ȳi||2∀i ∈ [1, n],

where || ||2 is the Euclidean Distance and x̄ = 1
n

∑n
i=1 xi

Ward’s criterion different from the previous ones, because it uses an anal-

ysis of variance to evaluate the distances between two clusters. It basi-

cally attempts to minimize the sum of squares of any two hypothetical

clusters being formed:

d2(x, y) = xiyi
||x̄i − ȳi||22
(xi + yi)
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NOTE One can decide to stop the clustering process either when the

clusters are too far apart to be merged (distance criterion) or when there is

a sufficiently small number of clusters (number criterion).

Principal Component Analysis

Principal component analysis (PCA) is a method of identifying patterns

in large data sets and reshaping those data sets as to highlight the similari-

ties and differences of their elements. It is a powerful technique for analyzing

high-dimensional data, where direct graphical representation is not always

feasible. In large data sets it is important to reduce the number of observed

dimensions to a smaller number of artificial dimensions (the principal com-

ponents) that account for most of the variance in the observed data. The

first principal component accounts for as much of the variability in the data

as possible, and each succeeding component accounts for as much of the re-

maining variability as possible. The biggest possible amount of variation will

be crammed into the smallest possible amount of dimensions. The data set

is thus compressed, while the redundant dimensions are ignored. The main

objectives of PCA are to reduce the dimensionality of the data set without

significant loss of information and to identify hidden and underlying patterns

in the data set.

x =


a1

a2

. . .

aN

 −−−−−−−−−−−−−→Reduce Dimensionality
y =


b1

b2

. . .

bK

 (K � N)

Suppose x1, x2, . . . , xM are N × 1 vectors.

� The first step is to calculate the mean:

x̄ =
1

M

M∑
i=1

xi,
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which is then subtracted from each individual observation Φi = xi− x̄,
leading to the creation of a (N ×M) matrix A =

[
Φ1 Φ2 . . . ΦM

]
� Based on A, the sample covariance is calculated:

C =
1

M

M∑
n=1

ΦnΦT
n = AAT

� The eigenvalues of C are calculated λ1 > λ2 > · · · > λN , as well as and

the eigenvectors u1, u2, . . . , uN

� Since C is symmetric, u1, u2, . . . , uN form a basis, meaning that any

vector (x−x̄) can be written as a linear combination of the eigenvectors:

x− x̄ = b1u1 + b2u2 + · · ·+ bNuN =
N∑
i=1

biui

� The dimensionality reduction step consists of choosing the terms cor-

responding to the K largest eigenvalues:

x̂− x̄ =
K∑
i=1

(K � N)

� The representation of x̂− x̄ into the basis u1, u2, . . . , uN is thus
b1

b2

. . .

bK


So, the overall linear transformation RN → RK performed by PCA is:

b1

b2

. . .

bK

 =


uT1

uT2

. . .

uTK

 (x− x̄) = UT (x− x̄)
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B
Matlab Code

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%%%%%%%%%% ###### ####### ######## ## ## %%%%%%%%%%%%%

3 %%%%%%%%%%%%% ## ## ## ## ## ## ### ## %%%%%%%%%%%%%

4 %%%%%%%%%%%%% ## ## ## ## ## #### ## %%%%%%%%%%%%%

5 %%%%%%%%%%%%% ###### ## ## ######## ## ## ## %%%%%%%%%%%%%

6 %%%%%%%%%%%%% ## ## ## ## ## ## #### %%%%%%%%%%%%%

7 %%%%%%%%%%%%% ## ## ## ## ## ## ## ### %%%%%%%%%%%%%

8 %%%%%%%%%%%%% ###### ####### ## ## ## ## %%%%%%%%%%%%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 %%%%%%%%%%%%%%%%%% SELF−ORGANIZING RECURRENT NETWORK %%%%%%%%%%%%%%%%%%

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12 %========================================================================

13 % author(s): RD, KMP

14 % date: 15/08/2011

15 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 clear all; clc;

17 %=========================================================================

18 % Simulation parameters

19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 nLSteps=50000; % number of learning steps;

21 nEstSteps=5000;

22 nPredSteps=5000;

23 nSteps=nLSteps+nEstSteps+nPredSteps;

24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 learning=1; % plasticity mechanisms on/off = 1/0;

26 wrdLgth=8; % word length n(+2); here n = 8;

27 strIn=1; % input structured or not = 1/0;

28 %−−−−−−−−−−−−−−−−−−−−−−−− node type −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 mcp=1; % McCulloch−Pitts nodes;

30 lif=0; % leaky integrate−and−fire nodes;

31 %−−−−−−−−−−−−−−−−−−−− transfer functions −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 hstep=0; % Heaviside step function;
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33 clpln=0; gain=1; % clipped linear function;

34 sigm=1; % tanh

35 %−−−−−−−−−−−−−−−−−−− performance analysis −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 performance=1; % performance analysis on/off = 1/0;

37 perturbation=0; % perturbation analysis on/off = 1/0;

38 activity=1;

39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 %=========================================================================

41 % Network parameters

42 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 nE=200; nI=.2*nE; % number of units in the network;

44 nU=.05*nE; % number of symbol specific input neurons;

45

46 tEmax=0.5; tImax=1.4; % maximum threshold values;

47 rSTDP=.001; % STDP adaptation parameter;

48 rIP=.001; % IP adaptation parameter and ...

49 hIP=2*nU/nE; % ... target rate;

50 lambda=10/(nE−1); % the probability of a wEE−connection;
51 % defines the sparsity of wEE; in this case,

52 % the mean number of input (or output) wEE−
53 % connections = 10;

54 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 %=========================================================================

56 % Network connectivity

57 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 wEI=rand(nE,nI); % static weights I−>E , uniform[0,1];

59 wEI=normalizeRows(wEI); % normalize rows of wEI to 1;

60 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 wIE=rand(nI,nE); % static weights E−>I , uniform[0,1];

62 wIE=normalizeRows(wIE); % normalize rows of wIE to 1;

63 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
64 % Initialization of wEE

65 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66 wEE=zeros(nE,nE); % dynamic weights E−>E;
67 ind=find(rand(nE,nE)≤lambda); % apply wEE sparseness;

68 wEE(ind)=rand(length(ind),1);

69 wEE(eye(nE)>0)=0; % self−connections = 0;

70 wEE=normalizeRows(wEE); % normalize rows of wEE to 1;

71 wEC=wEE>0; % to force wEE sparsity during learning;

72 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 % Initial firing thresholds

74 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75 tE=tEmax*rand(nE,1); % excitatory thresholds;

76 tI=tImax*rand(nI,1); % inhibitory thresholds;

77 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 %=========================================================================

79 % GENERATOR

80 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
81 % inputMatrix generates input sequences

82 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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83 [input,sY]=inputMatrix(nSteps,nU,nE,wrdLgth,strIn);

84 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
85 % pre−allocation
86 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 stE=zeros(nE,size(input,2)); stI=zeros(nI,size(input,2));

88 rDrive=zeros(nE,size(input,2));

89 stateE=zeros(nE,size(input,2)); stateI=zeros(nI,size(input,2));

90 pState=zeros(nE,size(input,2));

91 pertStateE=zeros(nE,size(input,2)); pertStateI=zeros(nI,size(input,2));

92 hammingD=zeros(1,nSteps);

93 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 % GENERATOR LOOP

95 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
96 for t=1:(size(input,2)−1)
97 %−−−−−−−−−−−−−−−−−−−−− internal state update −−−−−−−−−−−−−−−−−−−−−−−−−−−
98 if mcp

99 rDrive(:,t+1)=wEE*stateE(:,t)−wEI*stateI(:,t)−tE;
100 stE(:,t+1)=rDrive(:,t+1)+input(:,t);

101 stI(:,t+1)=wIE*stateE(:,t)−tI;
102 % elseif lif

103 % ...

104 end

105 %−−−−−−−−−−−−−−−−−−−−−− output state update −−−−−−−−−−−−−−−−−−−−−−−−−−−−
106 if hstep

107 stateE(:,t+1)=stE(:,t+1)>0;

108 stateI(:,t+1)=stI(:,t+1)>0;

109 pState(:,t+1)=rDrive(:,t+1)>0;

110 elseif clpln

111 stateE(:,t+1)=clplin(nE,stE(:,t+1),gain);

112 stateI(:,t+1)=clplin(nI,stI(:,t+1),gain);

113 pState(:,t+1)=clplin(nE,rDrive(:,t+1),gain);

114 elseif sigm

115 stateE(:,t+1)=sigmoid(nE,stE(:,t+1),gain);

116 stateI(:,t+1)=sigmoid(nI,stI(:,t+1),gain);

117 pState(:,t+1)=sigmoid(nE,rDrive(:,t+1),gain);

118 end

119 %−−−−−−−−−−−−−−−−−−−−− plasticity mechanisms −−−−−−−−−−−−−−−−−−−−−−−−−−−
120 if learning

121 if t≤nLSteps

122 %−−−−−−−− STDP −−−−−−−−−
123 wEE=wEE+rSTDP*wEC.* ...

124 (stateE(:,t+1)*stateE(:,t)'−stateE(:,t)*stateE(:,t+1)');
125 wEE(wEE<0)=0;

126 %−−−−−−−−− SN −−−−−−−−−−
127 wEE=normalizeRows(wEE);

128 %−−−−−−−−− IP −−−−−−−−−−
129 tE=tE+rIP*(stateE(:,t)−hIP);
130 end

131 end

132 %−−−−−−−−−−−−−−−−−−−−− perturbation analysis −−−−−−−−−−−−−−−−−−−−−−−−−−−
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133 if perturbation

134 pertStateE(:,t)=stateE(:,t);

135 r=randperm(nE); r=r(1);

136 pertStateE(r,t)=mod(stateE(r,t)+1,2);

137 pertStateE(:,t+1)=(wEE*pertStateE(:,t)−wEI*pertStateI(:,t)−...
138 tE+input(:,t))>0;

139 pertStateI(:,t+1)=(wIE*pertStateE(:,t)−tI)>0;
140 hammingD(t)=pdist2(stateE(:,t+1)',pertStateE(:,t+1)','hamming');

141 end

142 end

143 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
144 % END OF GENERATOR LOOP

145 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
146 [Bhat] = estimatewOut(pState(:,(nLSteps+1):end),sY((nLSteps+1):end,:)...

147 ,nEstSteps);

148

149 [perf,perfL2] = Performance (Bhat,sY((nLSteps+nEstSteps+1):end,:),...

150 pState(:,(nLSteps+nEstSteps+1):end),nPredSteps);

151

152 fRate = mean(sum(pState(:,nLSteps+1:end))/nE);

153

154 %=======================================================================

155 % SUB−FUNCTIONS
156 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
157 function [perf,perfL2] = Performance (Bhat,sY,pState,nSteps)

158 Y=sY(2:nSteps,:);

159 %−−−−−−−−−− time−series prediction −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
160 tsPred=pState(:,2:nSteps)'*Bhat;

161 %−−−−−−−−−− performance −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
162 [¬,sMax]=max(tsPred,[],2); [¬,ssY]=max(Y,[],2);
163 prdiff=(ssY==sMax); perf=mean(prdiff);

164 %−−−−−−−−−− L2−performance −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
165 perfL2=sqrt(mean(((Y−tsPred).ˆ2))')';
166 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
167 end

168

169 function [Bhat] = estimatewOut(pState,sY,nSteps)

170 %−−−−−−−−−− define linear readout by least−squares estimate −−−−−−
171 X=pState(:,2:nSteps)';

172 sY=sY(2:nSteps,:);

173 Bhat=pinv(X)*sY;

174 end

175

176 function [input,sY]=inputMatrix(nSteps,nU,nE,wrdLgth,strIn)

177 % − Generates input sequences consisting of random alternations of

178 % 2 "words" with n+2 letters ('a n*b c' / 'e n*d f');

179 % − Generates sequence of letter identifiers (sSqn) (1−6,
180 % corresponding to a−e);
181 % − Generates time−series of correct readout patterns sY for supervised

182 % learning in the readout layer;
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183 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
184 symbol=[[ones(nU,1);zeros(5*nU,1)], ...

185 [zeros(nU,1);ones(nU,1);zeros(4*nU,1)], ...

186 [zeros(2*nU,1);ones(nU,1);zeros(3*nU,1)], ...

187 [zeros(3*nU,1);ones(nU,1);zeros(2*nU,1)], ...

188 [zeros(4*nU,1);ones(nU,1);zeros(nU,1)], ...

189 [zeros(5*nU,1);ones(nU,1)]];

190 if strIn

191 word1=[symbol(:,1),repmat(symbol(:,2),1,wrdLgth),symbol(:,3)];

192 word2=[symbol(:,4),repmat(symbol(:,5),1,wrdLgth),symbol(:,6)];

193

194 Lgth=wrdLgth+2; m=ceil(nSteps/(2*Lgth));

195 input=zeros(nE,2*m*Lgth); wSeq=[ones(1,m),zeros(1,m)];

196 wSeq=wSeq(randperm(2*m));

197 input(1:6*nU,:)=kron(wSeq,word1)+kron(1−wSeq,word2);
198

199 yw1=eye(2*Lgth); yw2=yw1(:,Lgth+1:2*Lgth); yw1=yw1(:,1:Lgth);

200 sY=(kron(wSeq,yw1)+kron(1−wSeq,yw2))';
201

202 else

203 word=[symbol(:,1),symbol(:,2),symbol(:,3),...

204 symbol(:,4),symbol(:,5),symbol(:,6)];

205 w=1:6; m=ceil(nSteps/length(w));

206 input=repmat(word,1,m);

207 rperm=randperm(nSteps);

208 input=[input(:,rperm);zeros(nE−6*nU,nSteps)];
209 sY=repmat(eye(length(w)),m,1);

210 sY=sY(rperm(1:nSteps),:);

211 end

212

213 end

214

215 function [sta]=clplin(n,preE,m)

216 for i=1:n

217 if preE(i,1)<0

218 sta(i,1)=0;

219 elseif preE(i,1)≥0 && preE(i,1)≤1/m

220 sta(i,1)=m*preE(i,1);

221 elseif preE(i,1)>1/m

222 sta(i,1)=1;

223 end

224 end

225 end

226

227 function [nW]=normalizeRows(W)

228 c=size(W,2); nW=diag(1./(W*ones(c,1)))*W;

229 end
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C
Batch Mode (v0.1)

The batch mode is an automated way of implementing the simulation

studies described throughout the thesis and acquiring relevant data. It is

a preliminary version (with a lot of room for improvements) comprising a

basic user interface with the integration of all the relevant analysis methods

described. The results of the simulations performed can either be saved to

disk, or plotted (depending on the initial options the user is asked to specify).

It may still contain some bugs, so, if errors occur while running the batch

version, the user is advised to use the “normal” version (Appendix B).

Analysis Modes

The whole interface revolves around the type of analysis to be performed.

The data resulting from the simulations as well as the plots will depend on

the chosen analysis. By running main.m, the user is first asked to define this

parameter, followed by the output options (save and/or plot data).

Four analysis methods are allowed (see examples):

Single network (0) Simulates one network (either dynamic or static). The

results of these simulations will depend on the pre-defined analysis pa-

rameters (performance, perturbation, activity). This is the only type

of analysis that allows the user to perform PCA and hierarchical clus-

tering1.

1The plotting routines in the script that performs the cluster analysis are not entirely
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Main UI:

- Set Folder Paths
- Set Parameters

Analysis 
Modes

“Generative” Functions:

 - Generate Reservoir
 - Generate Input

SORN Simulator

Graphics Pack Save Data 

Figure C.1: Flow chart depicting the general components and structure of the code
included in the batch version.

Compare single networks (1) Simulates a dynamic reservoir, then switches

plasticity off, changes initial threshold values and simulates a static

reservoir. The plotting routines that emerge from this analysis include

a side-by-side comparison between the two reservoir types.

Parameter sweep (2) Analyzes the impact of varying a given variable value,

over a given range in the pre-specified parameters (performance, crit-

developed.
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icality, network activity). The user is asked to define the parameter

to analyze (note that this is case sensitive, the variable name must be

written exactly as it is defined in set_parameters.m), the interval to

sweep and the number of simulations to average over.

Compare parameter sweeps (3) Performs the same analysis as the pre-

vious mode, but includes both types of reservoirs. It starts by analyzing

dynamic reservoirs, after running the whole parameter range over all

the simulations, learning is set to zero, threshold parameters modified

and the analysis is repeated for the static reservoir. The output data

and plots will include the comparison of both reservoir types.

Note that prior to running main.m, the network’s parameters should be

set (by editing set_parameters.m and saving the changes).

Running the code

Start every analysis by editing set_parameters.m:

1 %=========================================================================

2 % Simulation parameters

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 nLSteps=50000; % number of learning (plasticity)

5 % steps;

6 nEstSteps=5000; % estimation time steps for

7 % specifying the readout layer;

8 nPredSteps=5000; % number of prediction steps;

9 %−−−−−−−−−−−−−−−−−−− Input characteristics −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 strIn=1; % input structured or not = 1/0;

11 wrdLgth=8; % word length n(+2);

12 %−−−−−−−−−−−−−−−−−−− Network characteristics −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 node type=0; % LIF−type node (1) or

14 % McCulloch−Pitts−type (0)

15 trf fcn=0; % transfer function: step(0), clipped

16 % linear(1) or sigmoid(2)

17 gain=0; % steepness of the transfer function

18

19 learning=1; % plasticity mechanisms on/off = 1/0;

20

21 nE=100; % number of exc units in the network;

22 tEmax=.5; tImax=1.4; % maximum threshold values;
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23 %−−−−−−−−−−−−−−−−−−− Analysis characteristics −−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 performance=1; % performance analysis on/off = 1/0;

25 perturbation=0; % perturbation analysis on/off = 1/0;

26 activity=1; % measure firing rates

27 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 %=========================================================================

29 % Aditional Network parameters

30 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 nI=.2*nE; % number of inhibitory units in the network;

32 nU=.05*nE; % number of symbol specific input neurons;

33 rSTDP=.001; % STDP adaptation parameter;

34 rIP=.001; % IP adaptation parameter and ...

35 hIP=2*nU/nE; % ... target rate;

36 lambda=10/(nE−1); % the probability of a wEE−connection;
37 % − defines the sparsity of wEE; in this

38 % case, the mean number of input (or output)

39 % wEE−connections = 10;

The default values of those parameters are stored in the default_pars.m,

located in the saved data folder. Note that when setting the analysis param-

eters (performance, perturbation, activity), at least one of them has to be

set to 1.

After choosing the network and simulation parameters, run main.m. This

script begins by setting the correct folder paths, then asks the user which type

of simulation to run and whether or not to save and/or plot the data. After

acquiring these values, the script calls other scripts or functions, depending

on the analysis mode chosen.

Single Network

Analysis Mode: 0

Save Data? 1

Plot Data? 1

After this, the script run_SingleNet.m is called, providing additional

user options:

Perform PCA? 0

Cluster Data (takes a long time)? 0

Running...
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The script calls the relevant functions (to understand what they do see

the functions section below):

1 set parameters

2 %======================================================================

3 % Generate Reservoir

4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 [Parameters] = gen reservoir (Parameters);

6 %==================================================================

7 % Generate Input

8 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 [Parameters] = gen input(Parameters);

10 %==================================================================

11 % Simulate

12 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 [PlotData] = SORNsimulator(Parameters);

After the simulation is complete, the elapsed time is displayed and the

relevant results plotted and saved (under the name SingleNet.mat in the

saved data folder). The resulting plots will depend on the type of reservoir

(dynamic or static) and on the chosen analysis parameters. For example,

if the simulated network was a dynamic reservoir, the resulting plots will

include the variation in WEE and TE, not included in the static case.

If performance analysis was set to 1, the plots will include the readout

error but not the performance per se (this result is only displayed in the

command prompt).

Compare single networks

Analysis Mode: 1

Save Data? 1

Plot Data? 1

In this case, the script called is run_compareSNet.m.

Running...

This script performs the same operations as the previous one, with the
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only difference that it simulates a dynamic and a static reservoir for a direct

comparison. After simulating the dynamic reservoir, learning is set to 0, and

the initial threshold values modified (lines 18−20). The changes in threshold

values are set according to the results presented in chapter 5. Alternatively,

the user may wish to modify this by editing run_compareSNet.m.

1 set parameters

2 Parameters.Network.Flags.Flagvalues(3)=1;

3 %==================================================================

4 % Generate Reservoir

5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 [Parameters] = gen reservoir (Parameters);

7 %==================================================================

8 % Generate Input

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 [Parameters] = gen input(Parameters);

11 %==================================================================

12 % Simulate

13 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 [Data] = SORNsimulator(Parameters);

15

16 %==================================================================

17 %==================================================================

18 Parameters.Network.Flags.Flagvalues(3)=0;

19 Parameters.Network.Variables.Varvalues(4)=0.75;

20 Parameters.Network.Variables.Varvalues(5)=0.8;

21 %==================================================================

22 % Generate Reservoir

23 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 [Parameters] = gen reservoir (Parameters);

25 %==================================================================

26 % Generate Input

27 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 [Parameters] = gen input(Parameters);

29 %==================================================================

30 % Simulate

31 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 [Data] = SORNsimulator(Parameters);

Throughout the simulation, the elapsed time for each reservoir is dis-

played:

Elapsed time (Dynamic Reservoir): 1.843789e+002

Elapsed time (Static Reservoir): 1.902951e+002
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Upon completion, the results are plotted and/or saved (in the saved data

folder, under the name SingleNetCompare.mat), similarly to what happens

in the previous case the only difference being that plots for dynamic and

static reservoirs are placed side-by-side, allowing the user to easily visualize

the differences.

Parameter Sweep

Analysis Mode: 2

Save Data? 1

Plot Data? 1

Running parameter sweeps has several peculiarities. By setting analysis

mode to 2, the main script calls the function run_parSweeps.m. Within this

function, the user is asked to specify the remaining parameters:

Parameter to evaluate: wrdLgth

Interval: 4:2:20

Number of simulations/condition: 10

When specifying the parameter to evaluate, caution must be taken to

ensure its name is written exactly as it is defined, i.e., the variable name

must be equal to the name that specifies it in set_parameters. This is be-

cause, during the simulation, the function will look for that name in Parame-

ters.Network.Variables.Varnames (see data structures below) and replace the

corresponding value in Parameters.Network.Variables.Varvalues.

The interval can be specified as in the displayed example (initial value:

interval: final value), or accounting for each individual value ([4, 6, 8, ...,

20]).

Another important aspect in this analysis mode is the order of the for

loops. If the parameter to analyze is relevant for setting the reservoir’s initial

states (weights, thresholds, number of neurons, etc.), a new reservoir must

be generated for each parameter and the n simulations ran on that reservoir.

If, for example, the parameter to evaluate was tEmax, the order of the loops
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would be:

1 for p=1:size(range,2)

2 Parameters.Network.Variables.Varvalues(ind) = range(p);

3 %======================================================================

4 % Generate Reservoir

5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 [Parameters] = gen reservoir (Parameters);

7

8 for n=1:nSims

9 %==================================================================

10 % Simulation

11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 [Parameters] = gen input(Parameters);

13 [SimData] = SORNsimulator (Parameters);

Otherwise, one reservoir is generated and the parameter range swept

through it. This is the case in the example above, where the parameter

to assess is wrdLgth.

1 ind=find(ismember(Parameters.Network.Variables.Varnames,Par));

2

3 if ind≥7

4 for n=1:nSims

5 %==================================================================

6 % Generate Reservoir

7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 [Parameters] = gen reservoir (Parameters);

9

10 for p=1:size(range,2)

11 Parameters.Network.Variables.Varvalues(ind) = range(p);

12 %==============================================================

13 % Simulation

14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 [Parameters] = gen input(Parameters);

16 [SimData] = SORNsimulator (Parameters);

This type of analysis tends to take some time, depending obviously on

the specified parameter and interval. So, during the simulation, information

about time is provided:

Elapsed time: 00:02:58 Time per condition: 00:02:58 Estimated time remaining: 00:08:54

Elapsed time: 00:06:13 Time per condition: 00:03:06 Estimated time remaining: 00:06:13

Elapsed time: 00:09:32 Time per condition: 00:03:10 Estimated time remaining: 00:03:10
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Elapsed time: 00:12:56 Time per condition: 00:03:14 Estimated time remaining: 00:00:00

After the simulations are completed, results are saved (with the name

CompareParsonline.mat) and/or plotted. The plots, in this case, are error

bars, depicting the means and standard deviations over the defined number

of simulations and the parameter range.

Compare parameter sweeps

Analysis Mode: 3

Save Data? 1

Plot Data? 1

This is the final analysis mode. It is in every aspect equal to the normal

parameter sweeps, the only difference being that it compares dynamics vs

static reservoirs. The script run_ComparePars.m, runs a parameter sweep

in the dynamic case, then switches plasticity off, resets the initial threshold

values and runs the static reservoirs. The data structures are saved online

(so, if the user decides to stop the process, the already obtained data is saved)

and in the end of the simulation. The final plots will look like Figure 5.1.

Data Structures

In order to save memory and keep the workspace clean, the majority of the

data is stored in structure arrays. All functions and scripts extract only the

relevant variables from these structures and assign them the correct names

prior to running their computation. After the computation is performed

all data is stored again in the correct structure location and the workspace

cleared.

Parameters

The Parameters structure initially stores the parameters defined in set_parameters.m,

but will also store the weights matrices and unit’s thresholds generated by
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gen_reservoir.m, the input matrices generated by gen_input.m and the

estimated readout weights (if performance analysis is on).

Parameters =

Analysis: [1x1 struct]

Network: [1x1 struct]

Simulation: [1x1 struct]

Input: {[200x60000 double] [10000x20 double]}

Network

Varnames

Varvalues

Flagnames

Flagvalues

(Readout)TopologyFlagsVariables

Analysis

OptionsFlagsType
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Simulation

VarvaluesVarnames

So, the Parameters structure contains the fields Network, Analysis, Sim-

ulation and Input, each with its own subfields. The field Input is the only

that does not contain subfields, it is a cell array with the matrices input and

sY.

The remaining fields in the structure contain the following data:

1 Parameters.Network.Variables.Varnames={'nE','nI','nU','tEmax','tImax',...
2 'lambda','wrdLgth','rIP','hIP','rSTDP','gain'};
3 Parameters.Network.Variables.Varvalues=[nE,nI,nU,tEmax,tImax,lambda,...

4 wrdLgth,rIP,hIP,rSTDP,gain];

5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 Parameters.Network.Flags.Flagnames={'node type','trf fcn','learning',...

7 'strIn'};
8 Parameters.Network.Flags.Flagvalues=[node type,trf fcn,learning,strIn];

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 Parameters.Analysis.Flags=[performance(1/0), perturbation(1/0), ...

11 activity(1/0)];

12 Parameters.Analysis.Type=[Analysis mode(0, 1, 2 or 3)];

13 Parameters.Analysis.Options=[save data (1/0), plot data (1/0), ...

14 perform PCA (1/0), perform clustering (1/0)];

15 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 Parameters.Simulation.Varnames={'nLSteps','nEstSteps','nPredSteps'};

To access the contents of any field, type Parameters.(subfield1).(..).

For example, to access the input matrix type:

1 Parameters.Input{1}
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Simulation Data

The data resulting from the simulations is stored in a structure, usually

called PlotData, that will serve as input to the plotting functions. The

contents of said structure will depend on the analysis mode.

Simulation Data

StaticDynamic and / or

Performances

Activity

Perturbation

Performances

Activity

Perturbation

For the analysis modes 0 and 1, the subfield Perturbation will contain

the calculated hamming distances in the post-learning period (in the case of

dynamic reservoirs); the subfield Performances is a cell array with the per-

formance result and the squared error; the subfield Activity contains pState

and the network topology. The topology structure saved here has the initial

and final WEE on positions 7 and 3, respectively and the initial and final

TE, on positions 8 and 5.

For the analysis modes 2 and 3, the subfields are somewhat different.

The subfield Performance1 contains an n× p matrix with the performance

results for n simulations and p conditions, whereas Performance2 is an n×p
cell array with the errors of each simulation. The subfield Activity has two
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n× p matrices with the mean firing rates for each simulation and the mean

number of inactive neurons. The subfield Criticality (note that the name is

different), has the mean hamming distances in an n×p matrix. An additional

subfield in included, called Parameters, containing the name of the analyzed

parameter, the range and number of simulations.

This structure should not modified because it contains all the relevant

information for the plotting routines, which may not work if the naming of

the fields or their values are modified.

Functions

The run functions described above, all call the same functions. We now

provide a short description of what they do.

Note that included in the Functions and Scripts folder are two addi-

tional functions (elapsedtimer.m and freezeColors.m). They are freely

distributed in the Matlab central2, but any use has to retain the authors

names, included in the preamble. elapsedtimer is used in analysis modes

2 and 3 to display the time information (it has been modified to suit the

particular needs of this code) and freezeColors is used in some plotting

routines, when setting different colormaps for different subplots in the same

figure.

Generate Reservoir

This function takes as input the Parameters structure, creates the initial

values of weights and thresholds and saves them in the Topology subfield.

1 %=========================================================================

2 % Network connectivity

3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 wEI=rand(nE,nI); % static weights I−>E , uniform[0,1];

5 wEI=normalizeRows(wEI); % normalize rows of wEI to 1;

6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 wIE=rand(nI,nE); % static weights E−>I , uniform[0,1];

2http://www.mathworks.com/matlabcentral/
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8 wIE=normalizeRows(wIE); % normalize rows of wIE to 1;

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 % Initialization of wEE

11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 wEE=zeros(nE,nE); % dynamic weights E−>E;
13 ind=find(rand(nE,nE)≤lambda); % apply wEE sparseness;

14 wEE(ind)=rand(length(ind),1);

15 wEE(eye(nE)>0)=0; % self−connections = 0;

16 wEE=normalizeRows(wEE); % normalize rows of wEE to 1;

17 wEC=wEE>0; % to force wEE sparsity during learning;

18 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 % Initial firing thresholds

20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 tE=tEmax*rand(nE,1); % excitatory thresholds;

22 tI=tImax*rand(nI,1); % inhibitory thresholds;

23 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % Save Data

25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 Parameters.Network.Topology={wEI,wIE,wEE,wEC,tE,tI};

Generate Input

This function generates the input matrix and training signal (sY).

1 if strIn

2 word1=[symbol(:,1),repmat(symbol(:,2),1,wrdLgth),symbol(:,3)];

3 word2=[symbol(:,4),repmat(symbol(:,5),1,wrdLgth),symbol(:,6)];

4 Lgth=wrdLgth+2; m=ceil(nSteps/(2*Lgth));

5 input=zeros(nE,2*m*Lgth); wSeq=[ones(1,m),zeros(1,m)];

6 wSeq=wSeq(randperm(2*m));

7 input(1:6*nU,:)=kron(wSeq,word1)+kron(1−wSeq,word2);
8

9 yw1=eye(2*Lgth); yw2=yw1(:,Lgth+1:2*Lgth); yw1=yw1(:,1:Lgth);

10 sY=(kron(wSeq,yw1)+kron(1−wSeq,yw2))';
11 if learning

12 sY=sY(nLSteps+1:end,:);

13 end

14 else

15 word=[symbol(:,1),symbol(:,2),symbol(:,3),...

16 symbol(:,4),symbol(:,5),symbol(:,6)];

17 w=1:6; m=ceil(nSteps/length(w));

18 input=repmat(word,1,m);

19 rperm=randperm(nSteps);

20 input=[input(:,rperm);zeros(nE−6*nU,nSteps)];
21 sY=repmat(eye(length(w)),m,1);

22 sY=sY(rperm(1:nSteps),:);

96



23 if learning

24 sY=sY(nLSteps+1:end,:);

25 end

26 end

27 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 % Save Data to structure

29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 Parameters.Input{1}=input; Parameters.Input{2}=sY;

SORN Simulator

This is the main simulator, it is in every aspect equal to the generator

in Appendix B, except for the variable data manipulations it includes, that

encompass the different analysis modes and parameters.
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